Verknüpfung von Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
gibt es eigentlich etwas, was ich mir zur Verknüpfung von Funktionen merken sollte? Wir haben das Thema nie explizit gehabt, aber wir sollten es uns mal ansehen.
Im Grunde ist es doch so:
Verknüpfe ich fog, dann f(g(x)) berechnen und andersrum für gof, oder?
Aber was bringt mir so eine Verknüpfung in der Regel? Was sind da weitere Aufgabenstellungen?
Im Grunde müsste ich mir doch dann nur merken, dass eine verknüpfte Funktion inihrem Definitionsbereich immer stetig ist, oder? Aber gilt das für die Verknüpfung der Definitionsbereiche der Ausgangsfunktionen oder der verknüpften Funktion?
Ich danke euch!
|
|
|
|
Zunächst einmal solltest du die Begriffe sorgfältig auseinanderhalten. Du redest die ganze Zeit von "Verknüpfen", deine Beispiele beziehen sich dann aber nur auf das "Verketten". Das Hintereinanderausführen von Funktionen bezeichnet man als "Verketten", dagegen kann "Verknüpfen" alles Mögliche sein: addieren, subtrahieren, multiplizieren, dividieren, verketten.
Das Wichtigste beim Verketten ist zunächst, daß die äußere Funktion (also die als zweite ausgeführte, nachgeschaltete Funktion) das akzeptieren muß, was die innere Funktion (also die als erste ausgeführte, vorgeschaltete Funktion) ausgibt. Oder etwas fachmännischer ausgedrückt: Der Wertebereich der inneren Funktion muß im Definitionsbereich der äußeren enthalten sein. Andernfalls ist eine Verkettung gar nicht möglich.
Wenn nun die Verkettung möglich ist, dann pflanzen sich Stetigkeit und Differenzierbarkeit fort. Damit ist gemeint: Sind beide Funktionen, innere wie äußere, stetig bzw. differenzierbar, so ist auch die verkettete Funktion stetig bzw. differenzierbar. Die zweite Aussage bezeichnet man auch als Kettenregel. Diese bestimmt auch, wie die Ableitung der verketteten Funktion zu berechnen ist.
Natürlich ist es nicht richtig, daß eine verkettete Funktion von alleine stetig oder differenzierbar ist. Da kann man Milliarden von Gegenbeispielen angeben.
Du solltest dir das alles noch einmal sehr genau anschauen ...
|
|
|
|
|
> Zunächst einmal solltest du die Begriffe sorgfältig
> auseinanderhalten. Du redest die ganze Zeit von
> "Verknüpfen", deine Beispiele beziehen sich dann aber nur
> auf das "Verketten". Das Hintereinanderausführen von
> Funktionen bezeichnet man als "Verketten", dagegen kann
> "Verknüpfen" alles Mögliche sein: addieren, subtrahieren,
> multiplizieren, dividieren, verketten.
> Das Wichtigste beim Verketten ist zunächst, daß die äußere
> Funktion (also die als zweite ausgeführte, nachgeschaltete
> Funktion) das akzeptieren muß, was die innere Funktion
> (also die als erste ausgeführte, vorgeschaltete Funktion)
> ausgibt.
du meinst fog=f(g(x)) und dass nun welche Funktion den Definitionsbereich von welcher akzeptieren muss?
|
|
|
|
|
> du meinst fog=f(g(x)) und dass nun welche Funktion den
> Definitionsbereich von welcher akzeptieren muss?
Hallo,
Du fütterst ja bei [mm] (f\circ [/mm] g)(x)=f(g(x)) die Funktion f mit g(x), also mit Funktionswerten von g.
Daher kannst Du nur verketten, wenn die Funktionswerte, die g annimmt, im Definitionsbereich von f liegen.
Gruß v. Angela
|
|
|
|