www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Verteilungsfunktion
Verteilungsfunktion < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 Fr 24.08.2012
Autor: Kuriger

Hallo

Die Zufallsvariable X hat eine symmetrische Verteilung, im INtervall 0,1 ist ihre Verteilungsfunktion F(x) = [mm] \bruch{1}{2} [/mm] * (1 + [mm] x^n) [/mm]


a) berechnen Sie den Erwartungswert von X
b) Berechnen Sie ihre Varianz von X
etc.

Also egal wie ich n wähle so ist bei E(x) = F(x= 0) = 0.5
Nun verstehe ich das symmetrisch ist. Was ist an dieser Verteilung symmetrisch?
Punktsymmetrisch im Punkt F(x) = 0.5 zu den beiden Bereichen -1 bis 0 und 0 bis 1 ?

Danke




        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Fr 24.08.2012
Autor: Al-Chwarizmi


> Hallo
>  
> Die Zufallsvariable X hat eine symmetrische Verteilung, im
> INtervall 0,1 ist ihre Verteilungsfunktion F(x) =
> [mm]\bruch{1}{2}[/mm] * (1 + [mm]x^n)[/mm]
>  
>
> a) berechnen Sie den Erwartungswert von X
>  b) Berechnen Sie ihre Varianz von X
>  etc.
>  
> Also egal wie ich n wähle so ist bei E(x) = F(x= 0) = 0.5   [haee]

Nein. Aus der Symmetrie der Verteilung bezüglich
x=0 folgt auch E(X)=0 .

>  Nun verstehe ich das symmetrisch ist. Was ist an dieser
> Verteilung symmetrisch?
> Punktsymmetrisch im Punkt F(x) = 0.5 zu den beiden
> Bereichen -1 bis 0 und 0 bis 1 ?


Hallo Kuriger,

mit der Symmetrie ist wohl gemeint, dass die Dichtefunktion
f (also die Ableitungsfunktion von F) eine gerade Funktion
ist, also f(-x)=f(x) .

Der insgesamt zu betrachtende Bereich ist wohl das
Intervall [-1 ... +1] .
Man kann sich klar machen, dass der Graph der Vertei-
lungsfunktion punktsymmetrisch sein muss, mit Symme-
triezentrum  [mm] Z(0,\frac{1}{2}). [/mm]
Daraus könnte man auch die passende Formel für F(x)
für negative x-Werte herleiten.

LG    Al-Chw.

Bezug
                
Bezug
Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Sa 25.08.2012
Autor: Kuriger

Hallo

Bei dieser Aufgabe hat mich das angegebene Intervall verwirrt.
Das Intervall [0, 1] ist symmetrisch...
Aber eigentlich müsste doch gegeben sein das Intervall [-1 ... +1] ist symmetrisch?

Danke
Gruss Kuriger

Bezug
                        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Sa 25.08.2012
Autor: Diophant

Hallo Kuriger,

> Das Intervall [0, 1] ist symmetrisch...
> Aber eigentlich müsste doch gegeben sein das Intervall
> [-1 ... +1] ist symmetrisch?

beachte mal in der Originalaufgabenstellung (die nicht sehr gelungen ist in meinen Augen) das Komma nach dem Wort Verteilung. Das bedeutet ja auf jeden Fall, dass von der Verteilungsfunktion nur ein Stück auf dem Intervall [0;1] gegeben ist. Die einzig sinnvolle Interpretation dieser Aufgabe hat Al-Chwarizmi dir ja schon genannt: die zugehörige Dichte sollte achsensymmetrisch zur y-Achse sein und die Verteilungsfunktion ist bekanntlich eine Stammfunktion der Dichte mit bestimmten Eigenschaften.

Leite also mal den gegebenen Teil der Verteilung ab, klebe links von der y-Achse einen dazu symmetrischen Ast dran. Das machst du am besten per zusammengesetzter Funktionsdefinition, was du auch für die Verteilungsfunktion übernimmst, um die Aufgabe dann per Definition des Erwartungswertes einer stetigen Verteilung anzugehen.

Natürlich kann man sehr einfach argumetieren, dass E(X)=0 gelten muss; und zwar genau wegen der Achsensymmetrie der Dichte. Aber ich denke, in diesem Fall sollst du das per Integralrechnung zeigen.


Gruß, Diophant


Bezug
                                
Bezug
Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Sa 25.08.2012
Autor: Al-Chwarizmi


> Natürlich kann man sehr einfach argumetieren, dass
> E(X)=1/2 gelten muss:    [haee]

> das Intervall, auf dem die Dichte
> definiert ist, besitzt eine Breite von 2 und der
> Flächeninhalt zwischen Dichte und x-Achse muss ja stets
> gleich 1 sein.

Nach meiner Ansicht muss (wegen der Symmetrie)  E(X)=0 sein !

Vielleicht hast du das verwechselt mit P(x<=0)=1/2  ...?...

LG     Al-Chw.




Bezug
                                        
Bezug
Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Sa 25.08.2012
Autor: Diophant

Hallo Al-Chwarizmi,

ja, du hast natürlich Recht: ein blöder Denkfehler meineeseits. Ich werde meinen Beitrag nachbessern.. Vielen Dank für den Hinweis!


Gruß, Diophant

Bezug
                                        
Bezug
Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Sa 25.08.2012
Autor: Kuriger

Ja genau, also bei x = 0 ist der abzulesende Erwartungswert, so habe ich es gemeint aber natürlich falsch formuliert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]