Verteilungsfunktion X1+X2 < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:13 So 12.08.2007 | Autor: | Wiwie |
Aufgabe | Bei einer Ampelanlage sind für jedes Rotlichtsignal zwei Glühbirnen eingebaut. Fällt die erste Birne wegen Defekts aus, wird automatisch auf die zweite Glühbirne umgeschaltet. Die Lebensdauern X1 und X2 der beiden Glühbirnen sind unabhängig und exponentialverteilt mit der Ausfallrate Lambda = 0,02.
a) ...
b) ...
c) Bestimmen Sie die Verteilung der Lebensdauer eines Rotlichtsignals. |
Hallo,
ist folgender Lösungsansatz korrekt?
Gesucht ist: P(X1+X2 [mm] \le [/mm] X)
Zunächst ist klar: Ich benötige ein Doppelintegral.
Im äußeren Integral laufe ich von [mm] y_{1} [/mm] = - [mm] \infty [/mm] bis zur Stelle X über die erste Zufallsvariable X1.
Im inneren Integral laufe ich von [mm] y_{2} [/mm] = - [mm] \infty [/mm] bis zur Stelle X - [mm] y_{1}.
[/mm]
Mit diesen beiden Integralen laufe ich über die gemeinsame Dichte-Funktion der beiden Zufallsvariablen X1 und X2 an der Stelle y1,y2.
Ich würde also behaupten, dass:
P(X1+X2 [mm] \le [/mm] X) = [mm] \integral_{y_{1} = -\infty}^{X}{\integral_{y_{2} = -\infty}^{X-Y_{1}}{f_{(X1,X2)}(y_{1},y_{2}) dX_{2}} dX_{1}}
[/mm]
Vielen Dank,
wiwie
|
|
|
|
> Bei einer Ampelanlage sind für jedes Rotlichtsignal zwei
> Glühbirnen eingebaut. Fällt die erste Birne wegen Defekts
> aus, wird automatisch auf die zweite Glühbirne
> umgeschaltet. Die Lebensdauern X1 und X2 der beiden
> Glühbirnen sind unabhängig und exponentialverteilt mit der
> Ausfallrate Lambda = 0,02.
> a) ...
> b) ...
> c) Bestimmen Sie die Verteilung der Lebensdauer eines
> Rotlichtsignals.
> Hallo,
>
> ist folgender Lösungsansatz korrekt?
>
> Gesucht ist: P(X1+X2 [mm]\le[/mm] X)
Scheint mir plausibel.
>
> Zunächst ist klar: Ich benötige ein Doppelintegral.
> Im äußeren Integral laufe ich von [mm]y_{1}[/mm] = - [mm]\infty[/mm] bis zur
> Stelle X über die erste Zufallsvariable X1.
> Im inneren Integral laufe ich von [mm]y_{2}[/mm] = - [mm]\infty[/mm] bis zur
> Stelle X - [mm]y_{1}.[/mm]
> Mit diesen beiden Integralen laufe ich über die gemeinsame
> Dichte-Funktion der beiden Zufallsvariablen X1 und X2 an
> der Stelle y1,y2.
>
> Ich würde also behaupten, dass:
>
> P(X1+X2 [mm]\le[/mm] X) = [mm]\integral_{y_{1} = -\infty}^{X}{\integral_{y_{2} = -\infty}^{X-Y_{1}}{f_{(X1,X2)}(y_{1},y_{2}) dX_{2}} dX_{1}}[/mm]
Diese Schreibweise gefällt mir nicht so recht: unter [mm] $dX_1$ [/mm] verstehe ich eigentlich [mm] $f_{X_1}(y_1)\; dy_1$, [/mm] hier also [mm] $\lambda \mathrm{e}^{-\lambda y_1}\; dy_1$. [/mm] Daher würde ich schreiben:
[mm] $P(X_1+X_2 \leq [/mm] X) = [mm] \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} 1_{\{X_1+X_2\leq X\}}\; dX_2\; dX_1 [/mm] = [mm] \int_{-\infty}^X\int_{-\infty}^{X-X_1}\; 1\; dX_2\; dX_1=\int_0^X\int_0^{X-y_1}\; \lambda \mathrm{e}^{-\lambda y_2}\; dy_2\; \lambda \mathrm{e}^{-\lambda y_1}\; dy_1=\ldots [/mm] $
Und dann solltest Du wohl diese Dichten der Verteilungen von [mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] so zusammenfassen, dass man die Dichte der Verteilung der Lebensdauer des Rotlichtsignals, also der Verteilung von [mm] $X_1+X_2$, [/mm] ablesen kann.
|
|
|
|