www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - VollständigeInduktions Beweise
VollständigeInduktions Beweise < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VollständigeInduktions Beweise: a) Korrektur, b) c) Hilfe/Tipp
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 12.11.2008
Autor: Elphaba

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Beweisen Sie die folgende Aussagen mit vollständiger Induktion:

a) Für alle n [mm] \in \IN [/mm] gilt: [mm] \summe_{i=1}^{n} [/mm] (3i-2)= [mm] \bruch{n*(3n-1)}{2} [/mm]

b) Für alle n [mm] \in \IN [/mm] gilt: n²+n ist gerade (dh. durch 2 teilbar)

c)) Für alle n >(gleich) 2 gilt: [mm] 2^n [/mm] > n+1

Ich stehe vermutlich total auf dem Schlauch.
Bei der a) hab ich folgendes:

a) Für alle n [mm] \in \IN [/mm] gilt: [mm] \summe_{i=1}^{n} [/mm] (3i-2)= [mm] \bruch{ n* (3n-1) }{2} [/mm]

IA
für n = 1 ist

[mm] \summe_{i=1}^{1} [/mm] (3*1-2)= [mm] \bruch{1*(3*1-1)}{2} [/mm]
[mm] \gdw [/mm] 1=1

Also ist A(1) richtig!

IS
Für ein beliebiges aber festes n [mm] \in \IN [/mm] gilt die Induktionsvorraussetzung [mm] \summe_{i=1}^{n} [/mm] (3i-2)= [mm] \bruch{n*(3n-1)}{2} [/mm]

Also erhalten wir:

[mm] \summe_{i=1}^{n+1} [/mm] (3i-2)= [mm] \bruch{(n+1)*(3(n+1)-1)}{2} [/mm]

[mm] \Rightarrow \bruch{(n+1)*(3n+2)}{2} [/mm]

[mm] \gdw \bruch{3n^2+5n+2}{2} [/mm]


[mm] \summe_{i=1}^{n+1} [/mm] (3i-2) = [mm] \summe_{i=1}^{n} [/mm] (3i-2) +(3(n+1)-2)
[mm] \gdw [/mm] 3 [mm] \bruch{n^2+n}{2} [/mm] - 3+ 3n
[mm] \gdw \bruch{3n^2+9n+6}{2} [/mm]

und jetzt hab ich entweder nen Fehler gemacht oder dieses Dingen lässt sich nicht mit Induktion beweisen sondern nur widerlegen ^__^

a) hab ich also "hinbekommen", wenn das so stimmt, allerdings müsst ich ja bei b) und c) erstmal ne Summenformel schreiben und die weiß ich nicht -.-" Bzw. geht das noch anders?


        
Bezug
VollständigeInduktions Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Mi 12.11.2008
Autor: M.Rex

Hallo

Bei a)

Du musst zeigen, dass
[mm] \summe_{i=1}^{n+1}(3i-2)=\bruch{n(3(n+1)-1)}{2} [/mm]

Also:

[mm] \summe_{i=1}^{n+1}(3i-2) [/mm]
[mm] =\red{\summe_{i=1}^{n}(3i-2)}+[3(n+1)-2] [/mm]
[mm] =\red{\bruch{n(3(n+1)-1)}{2}}+\bruch{6(n+1)-4}{2} [/mm]
[mm] =\bruch{n(3(n+1)-1)+6(n+1)-4}{2} [/mm]
[mm] =\vdots [/mm]
[mm] =\bruch{3n²+2n}{2} [/mm] (Siehe unten)
[mm] =\bruch{n(3(n+1)-1}{2} [/mm]

Wenn du
[mm] \bruch{n(3(n+1)-1}{2} [/mm] ausmultiplizierst, erhältst du.
[mm] \bruch{n(3(n+1)-1)}{2} [/mm]
[mm] =\bruch{3n(n+1)-n}{2} [/mm]
[mm] =\bruch{3n²+3n-n}{2} [/mm]
[mm] =\bruch{3n²+2n}{2} [/mm]

zu b)

Induktionsschritt ist hier: (n+1)²+(n+1) ist gerade, hier brauchst du keine Summe
(Unter der Voraussetzung, dass n²+n gerade ist).

zu c)

[mm] 2^{n+1}\ge((n+1)+1) [/mm] (Voraussetzung: [mm] 2^{n}\ge(n+1) [/mm]

Am sinnvollsten ist eine (Un)Gleichungskette

$$ [mm] 2^{n+1} [/mm] $$
$$ [mm] =2^{n}*2^{1} [/mm] $$
$$ [mm] \ge(n+1)*2 [/mm] $$
$$ =2n+2 $$
$$ [mm] \ge [/mm] n+2 $$
$$ =(n+1)+1 $$

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]