www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Di 16.10.2007
Autor: Waschi

Aufgabe
Bsp: [mm] 1+2+3+...+n=\bruch{n(n+1)}{2} [/mm]

1.) Induktionsanfang: Zeige, dass A(1) wahr ist.

2.) [mm] Induktionsschritt:A(n)\Rightarrow [/mm] A(n+1) für beliebiges [mm] n\in\IN, [/mm]
     dann gilt a(n) für jedes [mm] n\in\IN [/mm]

Hallo,

ich soll diese Aufgabe lösen und weiß nicht wirklich wie ich anfangen soll, geschweige denn wie die vollständige Induktion genau funktioniert. Kann mir jemand vielleicht schrittweise Hilfestellung geben? Ich habe noch keinen Lösungsansatz und weiß auch nicht wie ich beginnen soll :-(

Gruß Waschi

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Di 16.10.2007
Autor: Blech


> Bsp: [mm]1+2+3+...+n=\bruch{n(n+1)}{2}[/mm]

[mm]S(n):=\sum_{k=1}^n k = 1+2+...+n[/mm]
[mm]A(n):=\bruch{n(n+1)}{2}[/mm]

  

> 1.) Induktionsanfang: Zeige, dass A(1) wahr ist.
>
> 2.) [mm]Induktionsschritt:A(n)\Rightarrow[/mm] A(n+1) für beliebiges
> [mm]n\in\IN,[/mm]
> dann gilt a(n) für jedes [mm]n\in\IN[/mm]
>  Hallo,
>  
> ich soll diese Aufgabe lösen und weiß nicht wirklich wie
> ich anfangen soll,

Mit 1.

> geschweige denn wie die vollständige
> Induktion genau funktioniert.

Du beweist A(1)=S(1).
Dann beweist Du, daß aus A(n)=S(n) folgt, daß auch A(n+1)=S(n+1) gilt.

Da Du es für n=1 schon bewiesen hast gilt also A(2)=S(2), da es also für n=2 gilt, gilt es auch für A(3)=S(3), usw.

> Kann mir jemand vielleicht
> schrittweise Hilfestellung geben?

Zuerst machst Du 1., dann 2.
zu zeigen:
1. A(1)=S(1)
2. A(n+1)=S(n+1) unter der Annahme, daß A(n)=S(n)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]