www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion 2 Summe
Vollständige Induktion 2 Summe < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion 2 Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Fr 21.07.2006
Autor: komodor1986

Aufgabe
Beweisen Sie mit vollständiger Induktion
[mm] \summe_{i=1}^{n} i^3 [/mm] = [mm] \sum_{i=1}^{n} \sum_{j=1}^{n} [/mm] ij

Also bei dieser Aufgabe, bzw bei allen Aufgaben wo auf beiden Seiten vom Gleichheitszeichen Summen stehen, habe ich keinen schimmer wie ich die zu lösen habe!
Der Induktionsanfang ist ja noch einfach, da man da einfach nur n=1 einsetzen muss und dann auf beiden Seiten 1=1 rausbekommt.
Die Induktionsvoraussetzung bekomm ich auch noch hin (wenn es so ist sein soll, wie ich es aufgeschirben habe)
[mm] \summe_{i=1}^{n+1} i^3 [/mm] = [mm] \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} [/mm] ij
aber beim Induktionsschluss ist bei mir auch schluss. Ich habe einfach keine Idee wie ich die Formel aufstellen muss und wie ich sie aufzulösen habe, um eine wahre aussage zu bekommen.
Also rein aus dem bauch heraus würde ich sagen, dass ich

[mm] \sum_{i=1}^{n} \sum_{j=1}^{n} [/mm] ij + [mm] \summe_{i=1}^{n+1} i^3 [/mm] = [mm] \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} [/mm] ij setzen muss und wenn am Ende 0=0 heraus kommt ist es ja bewiesen. Aber wie rechne ich mit den Summen? Rechne ich nur mit dem letzten Element?

Über Hilfe würde ich mich freuen.
Gruß
komodor1986

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion 2 Summe: Dazu folgendes:
Status: (Antwort) fertig Status 
Datum: 12:22 Fr 21.07.2006
Autor: statler

Hallo komodor und [willkommenmr]

> Beweisen Sie mit vollständiger Induktion
>  [mm]\summe_{i=1}^{n} i^3[/mm] = [mm]\sum_{i=1}^{n} \sum_{j=1}^{n}[/mm] ij

>  Der Induktionsanfang ist ja noch einfach, da man da
> einfach nur n=1 einsetzen muss und dann auf beiden Seiten
> 1=1 rausbekommt.

>  Die Induktionsvoraussetzung bekomm ich auch noch hin (wenn
> es so ist sein soll, wie ich es aufgeschirben habe)

Die Ind.-Varaussetzung ist, daß die Beh. für (ein) n richtig ist, also nehmen wir an

>  [mm]\summe_{i=1}^{n+1} i^3[/mm] = [mm]\sum_{i=1}^{n+1} \sum_{j=1}^{n+1}[/mm]
> ij

[mm]\summe_{i=1}^{n} i^3[/mm] = [mm]\sum_{i=1}^{n} \sum_{j=1}^{n}[/mm] ij

und müssen nachweisen, daß die Beh. dann auch für n+1 stimmt:

[mm]\summe_{i=1}^{n+1} i^3[/mm] = [mm]\sum_{i=1}^{n+1} \sum_{j=1}^{n+1}[/mm] ij

Lt. Ind.-voraussetzung ist aber
[mm] \summe_{i=1}^{n+1} i^3 [/mm] = [mm] \summe_{i=1}^{n} i^3 [/mm] + [mm] (n+1)^{3} [/mm] = [mm] \sum_{i=1}^{n} \sum_{j=1}^{n} [/mm] ij + [mm] (n+1)^{3} [/mm]

Aber wie unterscheiden sich [mm] \sum_{i=1}^{n} \sum_{j=1}^{n} [/mm] ij und [mm] \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} [/mm] ij
Auf der rechten Seite kommt für jedes i von 1 bis n der Summand mit j = n+1 dazu, das ergibt zusammen 1*(n+1) + 2*(n+1) + ... + n*(n+1) =  [mm] \bruch{n(n+1)}{2}(n+1). [/mm]
Und dann kommt noch für i = n+1 die gesamte innere Summe dazu, also (n+1)*(1 + ... + n + (n+1)) = (n+1) [mm] \bruch{(n+1)(n+2)}{2} [/mm]
Wenn ich das zusammenfasse (Algebra), erhalte ich gerade [mm] (n+1)^{3} [/mm]
qed

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Vollständige Induktion 2 Summe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:14 Fr 21.07.2006
Autor: komodor1986

vielen dank dieter,
sieht ganz logisch aus, das einzige problem könnte nur die bildung der reihe werden und das erkennen eines schemas. gibt es da vielleicht irgend einen trick bei?
außerdem würde ich gerne wissen ob es sich immer noch um eine vollständige induktion handelt, wenn ich am ende nicht (n+1)³ herausbekomme sondern halt 0=0. teilweise ist es nämlich weniger arbeits alles auszurechnen und wieder zusammenzufassen als direkt teile zu kürzen. 0=0 bedeutet ja eigentlich nichts anderes, als dass die beiden seiten das selbe bedeuten, nur ist es erlaubt, da ich es nirgends gesehen habe bei beispielaufgaben.

Bezug
                        
Bezug
Vollständige Induktion 2 Summe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 23.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]