Volterra-Reihe und Wiener G-Fu < Technik < Ingenieurwiss. < Vorhilfe
|
Aufgabe | Betrachten Sie die Volterra-Reihe und die Wiener G-Funktional Reihe:
a) Geben Sie die Besonderheiten beider Reihenentwicklungen an.
b) Geben Sie Charakteristika von Integralfunktionen an.
c) Zählen Sie die Unterschiede zwischen "Volterra" und "Wiener" auf.
d) Warum ist eine Reihenentwicklung in orthogonale Funktionen vorteilhaft? |
Hallo zusammen!
Weiß nicht, ob sich jemand mit sowas auskennt, habe verhältnismäßig wenig dazu im Netz gefunden, wahrscheinlich ist es recht speziell und wird nicht so oft gemacht... Aber falls jemand Ahnung hat, könnte er mal sagen, ob das so richtig ist und ob ich noch etwas vergessen habe:
a)
Bei der Volterra-Reihe ist jeder Summand gerade ein Faltungsintegral (stimmt das so? in der VL haben wir aufgeschrieben: "Verwendung der Volterra Reihe, bei der ein Summand gerade dem Faltungsintegral entspricht." - aber bezieht sich das auf jeden Summanden? also dass jeder Summand ein Faltungsintegral ist?), gefaltet wird jeweils mit den Kernen [mm] h_1(\tau_1), h_2(\tau_1,\tau_2) [/mm] usw., diese sind genau die gesuchten Kennfunktionen des nichtlinearen Systems. Dabei ist der Kern [mm] h_1 [/mm] die Antwort des Systems auf einen Einzelpuls und [mm] h_2 [/mm] die Antwort auf einen zeitversetzten Doppelpuls in Differenz zu der für das lineare System erwarteten Superposition (das stand so in der VL und wir haben es uns auch anschaulich erklärt, wir betrachten also, wie ein lineares System reagiert hätte und berechnen die Differenz zu dem, wie das nichtlineare System reagiert). Die Volterra-Entwicklung ist nicht orthogonal, sodass die Ermittlung der Kerne schwierig ist.
(Was genau bedeutet das mit der Orthogonalität? Bedeutet dass, dass [mm] h_1(\tau_1) [/mm] nicht orthogonal zu [mm] h_2(\tau_1,\tau_2) [/mm] ist usw.? Also die Kerne paarweise orthogonal sind? Oder sind die einzelnen Summanden zueinander orthogonal?)
Die Wiener G-Funktional Reihe ist quasi die orthogonalisierte Volterra-Reihe. Wiener hat einige Summanden hinzugefügt, so dass die Reihe orthogonal wird. (Sind die Kerne die gleichen? Wir haben sie mit einem anderen Buchstaben bezeichnet, aber nichts dazu geschrieben...) Damit lassen sich die Kerne wesentlich leichter berechnen. Außerdem sind die Wiener Kerne symmetrisch, also invariant gegenüber Permutationen der Zeitargumente. (das habe ich so irgendwo gefunden, was genau bedeutet das? Sind die Zeitargumente t und [mm] \tau_i [/mm] - was genau sind eigentlich die [mm] \tau_i [/mm] ?)
b)
Integralfunktion - was ist das? Soll das das Gleiche sein wie eine Integralgleichung (wobei ja eine Gleichung normalerweise etwas ganz anderes ist als eine Funktion...), dann ist das eine Gleichung, in der eine Funktion und ihr Integral vorkommt. Jedenfalls haben wir das Wort Integralfunktion nirgendwo aufgeschrieben, und über Integralgleichungen sonst glaube ich auch nichts mehr. Weiß da noch jemand was?
c)
Naja, das habe ich ja schon oben erwähnt, bei Volterra ist das Ganze nicht orthogonal, bei Wiener schon. Sonst noch was?
d)
Weil sich die Kerne (?) dann leichter berechnen lassen. Aber wie? Hängt das mit der Autokorrelationsfunktion zusammen, die wir erst nächste Stunde machen werden?
Und wo lässt sich der zeitliche Mittelwert einordnen? Das habe ich auch irgendwo ab und zu gefunden, kann es aber nicht ganz einordnen.
Wenn jemand von irgendwas hier Ahnung hat, wäre schön, wenn er etwas hierzu schreibt.
Viele Grüße
Bastiane
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:22 Di 21.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|