www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Volumen richtig berechnet?
Volumen richtig berechnet? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen richtig berechnet?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Sa 15.01.2011
Autor: etoxxl

Aufgabe
Sei V={(x,y,z) [mm] \in \IR^3 [/mm] | |x| [mm] \le [/mm] 1 , |y| [mm] \le [/mm] 1, y-2 [mm] \le [/mm] z [mm] \le x^2+1} [/mm]
Berechne das Volumen von V.

Das müsste ja einfach die folgende Rechnung sein:
[mm] \integral_{-1}^{1}{\integral_{-1}^{1}{\integral_{y-2}^{x^2+1}{dz dy dx}}} [/mm] = [mm] \integral_{-1}^{1}{\integral_{-1}^{1}{( x^2+3 -y )dy dx}} [/mm] = [mm] \integral_{-1}^{1}{ (2x^2 + 6 )dx}= [/mm] 13 + 1/3

Kann das jemand bestätigen?

        
Bezug
Volumen richtig berechnet?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Sa 15.01.2011
Autor: notinX

Hi,

also ich komme auf das gleiche Ergebnis.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]