www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Volumenberechnung Kegel
Volumenberechnung Kegel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung Kegel: Übungsaufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:49 Di 30.05.2006
Autor: Blackpearl

Aufgabe
Berechne den Radius der Grundfläche.

a.  Kegel: [mm]h=12cm ; V=2412,7 cm^3[/mm]

b.  Kegel: [mm]h=15cm ; M=1602 cm^2[/mm]

Hallo Leute,

Und zwar habe ich das Problem das ich diese Aufgabe nicht lösen kann und Morgen schreibe ich eine Mathearbeit. Könnt ihr mir den Weg zur Lösung angeben und die Ergebnisse? Ich habe zwar Ergebnisse vorliegen aber glaube ich das diese nicht korrekt sind.

Gruß aus Lüdenscheid

Blackpearl

        
Bezug
Volumenberechnung Kegel: Formeln umstellen
Status: (Antwort) fertig Status 
Datum: 20:55 Di 30.05.2006
Autor: Loddar

Hallo Blackpearl!


Kennst Du die entsprechenden Formeln für das Volumen und der Mantelfläche des Zylinders?

[mm] $V_{\text{Zyl.}} [/mm] \ = \ [mm] \bruch{1}{3}*\pi*r^2*h$ [/mm]

[mm] $M_{\text{Zyl.}} [/mm] \ = \ [mm] \pi*r*s$ [/mm]  mit  $s \ = \ [mm] \wurzel{h^2+r^2 \ }$ [/mm]


Kannst du diese Formeln nun nach $r \ = \ ...$ umstellen (bei der 2. Aufgabe dann zunächst nach $s_$ und dann die weitere Formel verwenden).


Gruß
Loddar


Bezug
                
Bezug
Volumenberechnung Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Di 30.05.2006
Autor: Blackpearl

Ja ok das kriege ich hin. Und was ist das Ergebnis? In meinem Buch steht was anderes als ich immer rauskriege..

Bezug
                        
Bezug
Volumenberechnung Kegel: Dein Ergebnis?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Di 30.05.2006
Autor: Loddar

Hallo Schwarze Perle!


Wie lauten denn Deine Ergebnisse?


Gruß
Loddar


Bezug
                                
Bezug
Volumenberechnung Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Di 30.05.2006
Autor: Blackpearl

Also..
a: ungefähr 27,71 cm.
b: Einen moment. ^^ Ich rechne mal eben aus.


Bezug
                                        
Bezug
Volumenberechnung Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:53 Di 30.05.2006
Autor: Loddar

Hallo Blackpearl!


Kann es sein, dass Du hier den Durchmesser ausgerechnet hast: $d \ = \ 2*r$ . Dann stimmt das Ergebnis nämlich.


Gruß
Loddar


Bezug
                                                
Bezug
Volumenberechnung Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Di 30.05.2006
Autor: Blackpearl

Nein eigentlich nicht..^^

Bezug
                                
Bezug
Volumenberechnung Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Di 30.05.2006
Autor: Blackpearl

b: ungefähr 5,83 cm

Ich hoffe das ist richtig.

Bezug
                                        
Bezug
Volumenberechnung Kegel: stimmt leider nicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Di 30.05.2006
Autor: Loddar

Hallo Blackpearl!


Da stimmen beide Ergebnisse nicht [notok] .

Bitte poste doch dann mal Deine Rechenschritte ...


Gruß
Loddar


Bezug
                                                
Bezug
Volumenberechnung Kegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Di 30.05.2006
Autor: Blackpearl

Also:

[mm] M = \pi * r * s[/mm]
[mm]r = \bruch{M}{\pi * s} [/mm]

[mm]r = \bruch{M}{\pi * \wurzel{h^2}}[/mm]

[mm]r = \wurzel{\bruch{M}{\pi * \wurzel{h^2}}}[/mm]

So ich hoffe es hat alles geklappt..^^



Bezug
                                                        
Bezug
Volumenberechnung Kegel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Di 30.05.2006
Autor: Blackpearl

Shit^^ Da hat was nicht geklappt aber ich hoffe du verstehst das trotzdem..

Bezug
                                                        
Bezug
Volumenberechnung Kegel: r² unterschlagen
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 31.05.2006
Autor: Loddar

Hallo Blackpearl!


> [mm]M = \pi * r * s[/mm]
> [mm]r = \bruch{M}{\pi * s} [/mm]

[ok]

  

> [mm]r = \bruch{M}{\pi * \wurzel{h^2}}[/mm]

[notok] Hier hast Du leider nur die "halbe" Formel für $s_$ eingesetzt.

Es muss heißen:  $r = [mm] \bruch{M}{\pi * \wurzel{h^2 \ \red{+ \ r^2} \ }}$ [/mm]


Ich wäre hier alledings folgendermaßen vorgegangen:

$s \ = \ [mm] \bruch{M}{\pi*r} [/mm] \ = \ [mm] \wurzel{h^2+r^2 \ }$ [/mm]

Diese Gleichung nun quadrieren, anschließend mit [mm] $r^2$ [/mm] multiplizieren. Damit erhältst Du dann eine biquadratsiche Gleichung.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]