Vorwärtsdifferenzieren < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:31 Mo 20.06.2016 | Autor: | knie |
Aufgabe | "Mittels des formulierten Modells lässt sich das Härtungsverhalten im Rahmen des untersuchten Temperaturbereiches für jede beliebige Temperatur simulieren. [...] Dazu muss die modellierte aushärtegradabhängige Reaktionsgeschwindigkeit in einen zeitlichen Verlauf des Aushärtegrades überführt werden. Im vorliegenden Fall wurde hierfür die jeweils für die Erreichung definierter Aushärtegrade notwendige Dauer mittels sogenanntem Vorwärtsdifferenzieren, nach Gleichung [mm] t^{n+1}=\left(\bruch{d\alpha}{dt}\right)^{-1}*\Delta\alpha+t^n [/mm] , ermittelt. Dabei wurden inkrementale Aushärtegradschritte [mm] \Delta\alpha [/mm] von 0,001 gewählt." |
Ich habe über ein Modell und die gefitteten Parameter die Reaktionsgeschwindigkeit [mm] \bruch{d\alpha}{dt} [/mm] in Abhängigkeit des Härtungsgrades [mm] \alpha. [/mm] Wie bekomme ich den Aushärtegrad in Abhängigkeit der Zeit durch Vorwärtsdifferenzieren? Wie löse ich die Gleichung nach t auf? Ich benutze Origin. Gibt es dort vielleicht eine Funktion?
Ich hoffe ihr könnt mir helfen.
Viele Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:07 Mo 20.06.2016 | Autor: | chrisno |
Willst Du das, was im zitierten Text steht, umsetzen? Dazu müsste ich vorher wissen, ob [mm] $t^{n+1}$ [/mm] wirklich die Potenz meint oder ob n+1 nicht als Index gedacht ist, also [mm] $t_{n+1}$.
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:32 Mo 20.06.2016 | Autor: | knie |
Aufgabe | Willst Du das, was im zitierten Text steht, umsetzen? Dazu müsste ich vorher wissen, ob $ [mm] t^{n+1} [/mm] $ wirklich die Potenz meint oder ob n+1 nicht als Index gedacht ist, also $ [mm] t_{n+1} [/mm] $. |
In der Literatur die ich dazu gefunden habe, steht es tatsächlich als Potenz.
https://www.kunststoffe.de/_storage/asset/548421/storage/master/file/5892097/download/Reaktionskinetik%20von%20Verbundm%C3%B6rtelsystemen%20f%C3%BCr%20tragende%20Anwendungen%20im%20Bauwesen.pdf
Seite 19 der PDF.
Würde es denn als Index Sinn machen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:44 Mo 20.06.2016 | Autor: | chrisno |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
$ t^{n+1}=\left(\bruch{d\alpha}{dt}\right)^{-1}\cdot{}\Delta\alpha+t^n $
Ich betrachte die Einheiten:
t, dt: Sekunden,
$\alpha, d\alpha$: keine Einheit und falls doch, würde sie sich herauskürzen.
$Sekunde^{n+1} = Sekunde + Sekunde^{n}$ ist falsch. Daher macht die Interpretation als Potenz wenig Sinn.
Im anderen Fall ist es eine schlichte Iteration:
$ t_{n+1}=\left(\bruch{d\alpha}{dt}\right)^{-1}\cdot{}\Delta\alpha+t_n $
Du hast einen Zeitpunkt $t_n$, berechnest für diesen $\bruch{d\alpha}{dt}$, teilst $}\Delta\alpha$ durch diesen Wert und die Summe ergibt den nächsten Zeitpunkt, für den Du das wiederholst.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:27 Mo 20.06.2016 | Autor: | knie |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Im anderen Fall ist es eine schlichte Iteration:
$ t_{n+1}=\left(\bruch{d\alpha}{dt}\right)^{-1}\cdot{}\Delta\alpha+t_n $
Du hast einen Zeitpunkt $ t_n $, berechnest für diesen $ \bruch{d\alpha}{dt} $, teilst $ }\Delta\alpha $ durch diesen Wert und die Summe ergibt den nächsten Zeitpunkt, für den Du das wiederholst. |
Ich habe aber \bruch{d\alpha}{dt} (Reaktionsgeschwindigkeit) nur als Funktion von \alpha (Reaktionsgrad) (\bruch{d\alpha}{dt}=(A*e^(\bruch{-T_A}{T})+B*e^(\bruch{-T_B}{T})*\alpha^m)*(1-\alpha)^n). Wie rechne ich da eine Zeit hinzu bzw. wie berechne ich \bruch{d\alpha}{dt} für eine Zeit?
Ich habe für mich die Lösung gefunden. Ich muss nur \left(\bruch{d\alpha}{dt}\right)^(-1) über \alpha integrieren.
Danke für die Antworten.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Mo 20.06.2016 | Autor: | chrisno |
Ich verstehe das so, dass Du keine Antwort mehr brauchst. Wenn doch, dann stell eine neue Frage.
|
|
|
|