Wärmeleitung unsym. Randbed. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für die Wärmeleitgleichung im ein-dimensionalen Fall [mm] \bruch{\partial T}{\partial t} [/mm] = [mm] \bruch{k}{\rho c} \bruch{\partial^2 T}{\partial x^2} [/mm] wird die analytische Lösung mit den folgenden Randbedingungen gesucht. (Den Ursprung des Kordinatensystems habe ich an das untere Ende der Platte gelegt).
RB1: -k [mm] \bruch{\partial T(0,t)}{\partial x} [/mm] = [mm] h_u (T_{\infty,u} [/mm] - T(0,t))
RB2: -k [mm] \bruch{\partial T(d,t)}{\partial x} [/mm] = [mm] h_o (T_{\infty,o} [/mm] - T(d,t))
Anfangswert: T(x,0) = [mm] T_1
[/mm]
Es handelt sich um eine unendlich ausgedehnte Platte mit der Dicke d. Auf der Ober- und der Unterseite wird diese mit mit unterschiedlicher heißer und schneller Luft beblasen. Die Lufttemperaturen sind [mm] T_{\infty,u} [/mm] respektive [mm] T_{\infty,o} [/mm] mit den dazugehörigen Wärmeübergangskoeffizienten [mm] h_u [/mm] und [mm] h_o. [/mm] |
Hallo zusammen,
ich bin neu hier im Forum und brauche im Rahmen eines Projekts Eure Hilfe.
Ich benötige für ein Programm die Gleichung, um die instationäre Wärmeverteilung in einer dünnen Platte zu berechnen. Für den symmetrischen Fall, in welchem oben und unten gleiche Lufttemperaturen mit gleichen Wärmeübergangskoeffizienten herrschen, habe ich Lösungen gefunden. Leider aber nicht für diesen Fall. Es wird jedoch an mehreren Stellen erwähnt, dass auch hierfür eine analytische Lösung vorliegt.
Mein Wissen über Partielle DGL ist verhältnismäßig gering und ich würde sicherlich sehr lange brauchen, mir das Können zum Lösen dieser Gleichung anzueignen. Ich hoffe daher von Euch Unterstützung zu bekommen.
Mit besten Grüßen
Ferdinand
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Ich habe die Frage in einem weniger mathematischen und mehr thermodynamischen Ansatz bereits in einem anderen Forum gestellt.
http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=221479
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 Sa 20.08.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|