www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Wärmeleitungsgleichung
Wärmeleitungsgleichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wärmeleitungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 15.05.2012
Autor: EvelynSnowley2311

Aufgabe
Man zeige: Die Funktion
f(x,t) := [mm] t^{-n/2} \* exp(-\bruch{||x||^2}{4t}) [/mm]

ist eine Lösung der Wärmeleitungsgleichung

[mm] \Delta [/mm] f - [mm] \bruch{\partial f}{\partial t} [/mm]  = 0

huhu,

ichj dachte bei der Aufgabe erstma OMg.... und das denk ich immer noch... Ich habs zuerst versucht, indem ich 2 mal nach t ableite und 2 mal nach x, sodass ich den Laplace Operator benutzen kann, allerdings sind meine Brüche so heftig geworden, dass die Gleichung nicht aufgeht und ich deshalb diese Lösung hier gefunden habe, allerdings verstehe ich sie nicht, kann mir jemand die Schritte erklären?




Unter der Verwendung von Produkt und Kettenregel schließt man folgendermaßen:

[mm] \Delta [/mm] f(x,t) = [mm] \summe_{i=1}^{n} \bruch{\partial^2 f}{\partial x_{i}^2} [/mm] (x,t)


=  [mm] \summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}^2} (t^{-n/2} \* [/mm]  exp ( [mm] \summe_{j=1}^{n} x_{j}^2 \* [/mm] 1/4t))

wieso verschwindet hier ein [mm] \partial [/mm] oben im Zähler? da passiert doch noch gar nix oder?

=  [mm] \summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}} [/mm] ( f(x,t)  [mm] \* \bruch{-x_i}{2t} [/mm] )

was ist denn hier bitte passiert? ein partial fällt raus aus dem Nenner also wurde doch abgeleitet nach x, wie passierte das denn hier?


=  [mm] \summe_{i=1}^{n} [/mm] ( f(x,t) [mm] \* (\bruch{-x_i}{2t})^2 [/mm] + f(x,t) [mm] \* \bruch{-1}{2t}) [/mm]

ich versteh echt nicht wie das abgeleitet wurd..

= f(x,t) [mm] (\bruch{||x||^2}{4t^2} [/mm] - [mm] \bruch{n}{2t} [/mm] )

naja die summe versteh ich zumindest..


der andere rechenteil:


[mm] \bruch{\partial f }{\partial t} [/mm] (x,t)

= [mm] \bruch{\partial }{\partial t} [/mm] ( f(x,t)

= [mm] \Delta [/mm] f(x,t)

daher geht die Gleichung auf.


Ich bin sehr ehrgeizig und möchte dies gern nachvollziehen können ;( wäre lieb wenn das jmd durchschauen kann



Lg,


Eve

        
Bezug
Wärmeleitungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 15.05.2012
Autor: MathePower

Hallo EvelynSnowley2311,


> Man zeige: Die Funktion
>  f(x,t) := [mm]t^{-n/2} \* exp(-\bruch{||x||^2}{4t})[/mm]
>  
> ist eine Lösung der Wärmeleitungsgleichung
>  
> [mm]\Delta[/mm] f - [mm]\bruch{\partial f}{\partial t}[/mm]  = 0
>  huhu,
>  
> ichj dachte bei der Aufgabe erstma OMg.... und das denk ich
> immer noch... Ich habs zuerst versucht, indem ich 2 mal
> nach t ableite und 2 mal nach x, sodass ich den Laplace
> Operator benutzen kann, allerdings sind meine Brüche so
> heftig geworden, dass die Gleichung nicht aufgeht und ich
> deshalb diese Lösung hier gefunden habe, allerdings
> verstehe ich sie nicht, kann mir jemand die Schritte
> erklären?
>  
>
>
>
> Unter der Verwendung von Produkt und Kettenregel schließt
> man folgendermaßen:
>  
> [mm]\Delta[/mm] f(x,t) = [mm]\summe_{i=1}^{n} \bruch{\partial^2 f}{\partial x_{i}^2}[/mm]
> (x,t)
>  
>
> =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}^2} (t^{-n/2} \*[/mm]
>  exp ( [mm]\summe_{j=1}^{n} x_{j}^2 \*[/mm] 1/4t))
>  
> wieso verschwindet hier ein [mm]\partial[/mm] oben im Zähler? da
> passiert doch noch gar nix oder?
>  


Hier wurde eine "2" vergessen.

Richtig muss es daher lauten:

[mm]\summe_{i=1}^{n} \bruch{\partial^{\blue{2}}}{\partial x_{i}^2} (t^{-n/2} \* exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t))[/mm]
  

Die obige Summe kannst Du doch auch so schreiben:

[mm]\summe_{i=1}^{n} \bruch{\partial^{2} }{\partial x_{i}^2} ( \ t^{-n/2} \* exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t) \ )=\summe_{i=1}^{n} \bruch{\partial }{\partial x_{i}} (\bruch{\partial }{\partial x_{i}} \left( \ t^{-n/2} \*exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)\right))[/mm]


> =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}}[/mm] (
> f(x,t)  [mm]\* \bruch{-x_i}{2t}[/mm] )
>


Das ergibt dann:

[mm]\summe_{i=1}^{n} \bruch{\partial }{\partial x_{i}} ( \ t^{-n/2} \*exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)*\bruch{-x_{i}}{2*t} \ )=\summe_{i=1}^{n} \bruch{\partial }{\partial x_{i}} ( \ f\left(x,t\right)*\bruch{-x_{i}}{2*t} \ )[/mm]


> was ist denn hier bitte passiert? ein partial fällt raus
> aus dem Nenner also wurde doch abgeleitet nach x, wie
> passierte das denn hier?
>  
>
> =  [mm]\summe_{i=1}^{n}[/mm] ( f(x,t) [mm]\* (\bruch{-x_i}{2t})^2[/mm] +
> f(x,t) [mm]\* \bruch{-1}{2t})[/mm]

>


Hier wurde [mm]f\left(x,t\right)*\bruch{-x_{i}}{2*t}[/mm]
nochmals partiell nach [mm]x_{i}[/mm] differenziert.


> ich versteh echt nicht wie das abgeleitet wurd..

>

> = f(x,t) [mm](\bruch{||x||^2}{4t^2}[/mm] - [mm]\bruch{n}{2t}[/mm] )
>  
> naja die summe versteh ich zumindest..
>  
>
> der andere rechenteil:
>  
>
> [mm]\bruch{\partial f }{\partial t}[/mm] (x,t)
>
> = [mm]\bruch{\partial }{\partial t}[/mm] ( f(x,t)
>  
> = [mm]\Delta[/mm] f(x,t)
>
> daher geht die Gleichung auf.
>  
>
> Ich bin sehr ehrgeizig und möchte dies gern nachvollziehen
> können ;( wäre lieb wenn das jmd durchschauen kann
>  
>
>
> Lg,
>  
>
> Eve


Gruss
MathePower

Bezug
                
Bezug
Wärmeleitungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 15.05.2012
Autor: EvelynSnowley2311

hey,


also kann ich sagen dass nie erklärt worden ist, was man ableitet und wie?
ich meine z.b

>  
>
> > Unter der Verwendung von Produkt und Kettenregel schließt
> > man folgendermaßen:
>  >  
> > [mm]\Delta[/mm] f(x,t) = [mm]\summe_{i=1}^{n} \bruch{\partial^2 f}{\partial x_{i}^2}[/mm]
> > (x,t)
>  >  
> >
> > =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}^2} (t^{-n/2} \*[/mm]
> >  exp ( [mm]\summe_{j=1}^{n} x_{j}^2 \*[/mm] 1/4t))

>  >  
> > wieso verschwindet hier ein [mm]\partial[/mm] oben im Zähler? da
> > passiert doch noch gar nix oder?
>  >  
>
>
> Hier wurde eine "2" vergessen.
>  
> Richtig muss es daher lauten:
>  
> [mm]\summe_{i=1}^{n} \bruch{\partial^{\blue{2}}}{\partial x_{i}^2} (t^{-n/2} \* exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t))[/mm]
>  
>  
>
> Die obige Summe kannst Du doch auch so schreiben:
>  
> [mm]\summe_{i=1}^{n} \bruch{\partial^{2} }{\partial x_{i}^2} ( \ t^{-n/2} \* exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t) \ )=\summe_{i=1}^{n} \bruch{\partial }{\partial x_{i}} (\bruch{\partial }{\partial x_{i}} \left( \ t^{-n/2} \*exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)\right))[/mm]
>  
>
> > =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}}[/mm] (
> > f(x,t)  [mm]\* \bruch{-x_i}{2t}[/mm] )
>  >

Nur woher kommt   [mm] \bruch{-x_i}{2t} [/mm] genau? ich kanns ja nicht aus der darstellung raus sehen, die ich hier habe oder??

>
> Das ergibt dann:
>  
> [mm]\summe_{i=1}^{n} \bruch{\partial }{\partial x_{i}} ( \ t^{-n/2} \*exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)*\bruch{-x_{i}}{2*t} \ )=\summe_{i=1}^{n} \bruch{\partial }{\partial x_{i}} ( \ f\left(x,t\right)*\bruch{-x_{i}}{2*t} \ )[/mm]
>  
>
> > was ist denn hier bitte passiert? ein partial fällt raus
> > aus dem Nenner also wurde doch abgeleitet nach x, wie
> > passierte das denn hier?
>  >  
> >
> > =  [mm]\summe_{i=1}^{n}[/mm] ( f(x,t) [mm]\* (\bruch{-x_i}{2t})^2[/mm] +
> > f(x,t) [mm]\* \bruch{-1}{2t})[/mm]
>  >
>  
>
> Hier wurde [mm]f\left(x,t\right)*\bruch{-x_{i}}{2*t}[/mm]
>  nochmals partiell nach [mm]x_{i}[/mm] differenziert.
>  
>
> > ich versteh echt nicht wie das abgeleitet wurd..
>  >
>  > = f(x,t) [mm](\bruch{||x||^2}{4t^2}[/mm] - [mm]\bruch{n}{2t}[/mm] )

>  >  
> > naja die summe versteh ich zumindest..
>  >  
> >
> > der andere rechenteil:
>  >  
> >
> > [mm]\bruch{\partial f }{\partial t}[/mm] (x,t)
> >
> > = [mm]\bruch{\partial }{\partial t}[/mm] ( f(x,t)
>  >  
> > = [mm]\Delta[/mm] f(x,t)
> >
> > daher geht die Gleichung auf.
>  >  
> >
> > Ich bin sehr ehrgeizig und möchte dies gern nachvollziehen
> > können ;( wäre lieb wenn das jmd durchschauen kann
>  >  
> >
> >
> > Lg,
>  >  
> >
> > Eve
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Wärmeleitungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Di 15.05.2012
Autor: MathePower

Hallo EvelynSnowley2311,

> hey,
>  
>
> also kann ich sagen dass nie erklärt worden ist, was man
> ableitet und wie?
>  ich meine z.b

>  
> >  

> >
> > > =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}}[/mm] (
> > > f(x,t)  [mm]\* \bruch{-x_i}{2t}[/mm] )
>  >  >

> Nur woher kommt   [mm]\bruch{-x_i}{2t}[/mm] genau? ich kanns ja
> nicht aus der darstellung raus sehen, die ich hier habe
> oder??


Das kommt von der inneren Ableitung von  [mm] exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)[/mm] nach [mm]x_{i}[/mm].


Gruss
MathePower

Bezug
                                
Bezug
Wärmeleitungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 15.05.2012
Autor: EvelynSnowley2311

achhsoo

aber in  

> >  

> > >  

> > >
> > > > =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}}[/mm] (
> > > > f(x,t)  [mm]\* \bruch{-x_i}{2t}[/mm] )
>  >  >  >

> > Nur woher kommt   [mm]\bruch{-x_i}{2t}[/mm] genau? ich kanns ja
> > nicht aus der darstellung raus sehen, die ich hier habe
> > oder??
>  
>
> Das kommt von der inneren Ableitung von  [mm]exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)[/mm]
> nach [mm]x_{i}[/mm].
>  

da fehlt dann aber ein - Zeichen nach exp vor der Summe oder?
also
exp ( - [mm] \summe_{j=1}^{n} x_{j}^2 \* [/mm] 1/4t)

Bezug
                                        
Bezug
Wärmeleitungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Di 15.05.2012
Autor: MathePower

Hallo EvelynSnowley2311,

> achhsoo
>  
> aber in  
> > >  

> > > >  

> > > >
> > > > > =  [mm]\summe_{i=1}^{n} \bruch{\partial f}{\partial x_{i}}[/mm] (
> > > > > f(x,t)  [mm]\* \bruch{-x_i}{2t}[/mm] )
>  >  >  >  >

> > > Nur woher kommt   [mm]\bruch{-x_i}{2t}[/mm] genau? ich kanns ja
> > > nicht aus der darstellung raus sehen, die ich hier habe
> > > oder??
>  >  
> >
> > Das kommt von der inneren Ableitung von  [mm]exp ( \summe_{j=1}^{n} x_{j}^2 \* 1/4t)[/mm]
> > nach [mm]x_{i}[/mm].
>  >  
> da fehlt dann aber ein - Zeichen nach exp vor der Summe
> oder?


Ja.


>  also
> exp ( - [mm]\summe_{j=1}^{n} x_{j}^2 \*[/mm] 1/4t)


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]