www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Standartnormalverteilte
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 18.06.2014
Autor: siggi571

Aufgabe
Die Zufallsvariable X ist normalverteilt mit dem Mittelwert = 2 und der SAW = 0,5. Berechnen Sie die Wahrscheinlichkeit unter der Verwedung der Verteilungfunktion I(u) der Standardnormalverteilung von P(|X| <= 2,13)

Hallo Community,

ich habe ein Problem bzgl dieser Aufgabe.

Ich komme zwar auf ein Ergebnis, welches meiner Meinung nach richtig sein sollte, es aber laut Lösung nicht ist.
Allerdings steht da nirgends ein Rechenweg.
Deshalb gehe ich davon aus, dass ich irgendwo einen Fehler gemacht habe.

Mein Rechenweg:

P(|X| <= 2,13).

U = [mm] \bruch{X-\mu}{SAW} [/mm]

= [mm] \bruch{2,13-2}{0,5} [/mm] = 0,26.


=> 2*I(0,26) - 1 = p = 0,2052

(Nr.: I(0,26) ist laut Tabelle 0,6026)

So, die Lösung sagt nun aber p=0,6026

Wo ist mein Fehler? Meinen die mit Ihrer Lösung am ende nur die Standarteinheit U?

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mi 18.06.2014
Autor: Diophant

Hallo,

> Die Zufallsvariable X ist normalverteilt mit dem Mittelwert
> = 2 und der SAW = 0,5. Berechnen Sie die Wahrscheinlichkeit
> unter der Verwedung der Verteilungfunktion I(u) der
> Standardnormalverteilung von P(|X| <= 2,13)
> Hallo Community,

>

> ich habe ein Problem bzgl dieser Aufgabe.

>

> Ich komme zwar auf ein Ergebnis, welches meiner Meinung
> nach richtig sein sollte, es aber laut Lösung nicht ist.
> Allerdings steht da nirgends ein Rechenweg.
> Deshalb gehe ich davon aus, dass ich irgendwo einen Fehler
> gemacht habe.

>

> Mein Rechenweg:

>

> P(|X| <= 2,13).

>

> U = [mm]\bruch{X-\mu}{SAW}[/mm]

>

> = [mm]\bruch{2,13-2}{0,5}[/mm] = 0,26.

>
>

> => 2*I(0,26) - 1 = p = 0,2052

>

> (Nr.: I(0,26) ist laut Tabelle 0,6026)

>

Dein Rechenweg enthält hier einen beliebten Fehler: Der Ansatz

[mm] P=2\Phi(z)-1 [/mm]

ist hier hier falsch (er funktioniert nur für ein Intervall, welches symmetrisch um den Erwartungswert liegt). Hier muss man mit

[mm] P=\Phi(z_2)-\Phi(z_1) [/mm]

rechnen, wobei du letzteren Wert noch, sagen wir mal nicht: ermitteln, sondern klarmachen musst, da er bekanntlich wegen [mm] z_1=\bruch{-2.13-2}{0.5}=-8.26<0 [/mm] nicht in der Tabelle steht. Ein Funktionswert der Phi-Funktion in diesem Bereich darf allerdings getrost gleich Null angesetzt werden, ohne dass man einen nennenswerten Fehler begeht...

> So, die Lösung sagt nun aber p=0,6026

Ja, und die Tatsache, dass dies offensichtlich gleich [mm] P(X\le{2.13}) [/mm] ist, rührt eben von [mm] \Phi(-8.26)\approx{0} [/mm] her.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]