www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Mi 18.01.2006
Autor: mamady

Angenommen, es sind Daten gegeben, die sich in k Klassen mit jeweils n Objekten einteilen lassen. Wie groß ist die Wahrscheinlichkeit, durch zufällige Auswahl(mit zurücklegen) von k Objekten genau ein Objekt aus jeder Klasse zu erhalten?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Do 19.01.2006
Autor: Julius

Hallo mamady!

Da alle Klassen gleich viele Objekte besitzen und wir immer wieder zurücklegen, spielt das $n$ gar keine Rolle.

Die Frage kann man doch dann auch so stellen:

Wie groß ist die Wahrscheinlichkeit bei $k$ Ziehungen alle $k$ verschiedenen Klassen zu erreichen?

Und die ist offenbar [mm] $\frac{k!}{k^k}$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]