www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Kartenspiel
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 07.08.2007
Autor: kermit

Aufgabe
Aus einem Kartenspiel mit 32 Karten (Skatblatt) werden 10 Karten gezogen.

Mit welcher Wahrscheinlichkeit sind 5 von diesen Karten Herz Karten.

Hallo,

unser Lehrer hat uns diese Aufgabe zum Nachdenken gegeben, aber ich habe nach zwei Stunden Nachdenken keine Lust mehr :(.

Wäre nett, wenn mir jemand beim Anfang helfen könnte.

Als Ansatz habe ich:

Es gibt 8 Herz Karten P(A) und 24 "nicht" Herz Karten [mm] P(\overline{A}). [/mm]

Ich ziehe jetzt 10mal, dabei sinkt bei jedem ziehen die Wahrscheinlichkeit eine falsche oder richtige Karte zu ziehn.

Danke schonmal

MfG Kermit

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 07.08.2007
Autor: Kroni

Hi,

ich gebe dir zunächst nur einen kleinen Tip weil ich davon überzeugt bin, dass du die Lösung selbst findest:

Du kennst Lotto. Dann kennst du bestimmt auch die Lottoformel.

Die kannst du hier auch anwenden:

Du hast [mm] $\pmat{32\\10}$ [/mm] Möglichkeiten, aus 32 Karten 10 auszuwählen.

Dann hast du 8 Herz-Karten und 24 nicht Herz.

Genau fünf Herz Karten setzt sich doch dann so zusammen:

Fünf Herz und Fünf Nicht-Herz.

Wie viele Möglichkeiten hast du, aus den 8 HerzKarten fünf auszuwählen und wie viele Möglichkeiten um aus den 24 nichtHerz fünf auszuwählen?

Jetzt erinner dich nochmal an die Lotto-Formel und du hast es geschafft.


LG

Kroni



Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 07.08.2007
Autor: kermit

Ich nehme mal an die Lotto Formel ist das "ziehen mit einem Griff" und dem Bionomialkoeffizient, weil so hat es mein Lehrer nie genannt.

weiter...

Wenn man außer acht lässt welche Karten man zieht, muss man 5 herz und 5 nicht-herz karten ziehn. Die Wahrscheinlichkeit, dass von 10 Karten aus 8 Herz Karten 5 dabei sind, muss man dann mit der Warscheinlichkeit für die anderen Karten zusammenrechen?

Ich bin ein wenig verplant...


Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Di 07.08.2007
Autor: Kroni

Hi,

ja, das ist die Formel mit den zwei Binomialkoeffizienten im Zähler und dem einen im Nenner.

Dann die beiden Anzahl der Möglichkeiten für fünf Herz aus Acht Karten und der Anzahl für fünf nicht-Herz aus 24 Karten multiplizieren und das geteilt durch die Anzahl der Möglichkeiten für 10 Karten aus 32 und du bist am Ziel.

LG

Kroni

Bezug
                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Di 07.08.2007
Autor: kermit

Ok danke, das versteh ich. Bin sogar fast selber drauf gekommen, hab aber im zu kleinen Maßstab gedacht bzw. falsch herumgedacht :)

Danke für deine Mühen.
Das Ergebniss wäre dann 0,0369 (gerundet) demnach 3,69 %

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]