Wahrscheinlichkeit darstellen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:23 Sa 01.11.2008 | Autor: | Johie |
Aufgabe | Suchtests für eine spezifische Krankheit sind typischerweise preiswert, aber nicht absolut zuverlässig. Für eine konkrete Bevölkerung sei aus Erfahrung bekannt:
- die Wahrscheinlichkeit [mm] \alpha, [/mm] dass bei einer nicht erkrankten Person der Test ein falsches Ergebnis liefert,
- die Wahrscheinlichkeit [mm] \beta, [/mm] dass bei einer erkrankten Person der Test ein falsches Ergebnis liefert,
- der Anteil [mm] \gamma [/mm] der Erkrankten.
Von Interesse sind dann Wahrscheinlichkeiten für Fehldiagnosen des Tests:
- die Wahrscheinlichkeit [mm] \delta, [/mm] dass bei einem positiven Testergebnis (erkrankt) die Person nicht erkrankt ist,
- die Wahrscheinlichkeit r, dass bei einem negativen Testergebnis (nicht erkrankt) die Person erkrankt ist.
a) Unter Verwendung der Ereignisse K (Person krank), CK (Person nicht krank), T (Testergebnis positiv: krank) und CT (Testergebnis negativ: nicht krank) stelle man die Wahrscheinlichkeiten [mm] \delta [/mm] und r als Funktionen [mm] \alpha, \beta, \gamma \in [/mm] (0,1) dar.
b) Als konkretes Beispiel betrachten wir den Test bei Frauen in der 11.-14. Schwangerschaftswoche zur Früherkennung von Trisomie 21 des Kindes. Dieser Test kombiniert eine Ultraschall-Untersuchung des Kindes mit einem Bluttest der Mutter. Hier sind folgende Werte realistisch:
Prävalenz: [mm] \gamma [/mm] = 1/680
falsch/negativ: [mm] \beta [/mm] = 15%
falsch/positiv: [mm] \alpha [/mm] = 5%
Wie groß sind hier die Wahrscheinlichkeiten [mm] \delta [/mm] und r für die Fehldiagnose? |
Aufgabenteil a):
Gegeben:
M:= {"Menschen"} Wahrscheinlichkeitsraum [mm] (\partial, \mathcal{A}, \mathcal{P})
[/mm]
[mm] \partial [/mm] := {x [mm] \in [/mm] M|x ist Bundesbürger}
K:= {x [mm] \in \partial|x [/mm] ist [mm] krank}\subset \mathcal{A}
[/mm]
CK := {x [mm] \in \partial|x [/mm] ist nicht krank} [mm] \subset \mathcal{A}
[/mm]
T:= {x [mm] \in \partial|x [/mm] ist positiv [mm] getestet}\subset \mathcal{A}
[/mm]
CT := {x [mm] \in \partial|x [/mm] ist negativ getestet} [mm] \subset \mathcal{A}
[/mm]
Weiterhin gilt: K [mm] \cup [/mm] CK = [mm] \partial [/mm] und T [mm] \cup [/mm] CT = [mm] \partial [/mm] (i)
Formeln für [mm] \alpha, \beta, \gamma [/mm] sind bekannt:
[mm] \alpha: \mathcal{P} [/mm] (T|CK) = [mm] \bruch{\mathcal{P} (T \cap CK)}{\mathcal{P} (CK)}
[/mm]
[mm] \beta: [/mm] hierbei nehmen wir das umgekehrte Ereignis: [mm] 1-\beta:
[/mm]
[mm] \mathcal{P} [/mm] (T|K) = [mm] \bruch{\mathcal{P} (T \cap K)}{\mathcal{P} (K)}
[/mm]
[mm] \gamma: \mathcal{P} [/mm] (K) = [mm] \bruch{#K}{# \partial} \Rightarrow \mathcal{P} [/mm] (CK) = 1 - [mm] \mathcal{P} [/mm] (K)
Nach i ist auch:
[mm] \mathcal{P} [/mm] (T) = 1 - [mm] \mathcal{P} [/mm] (CT)
= [mm] \mathcal{P} [/mm] (T|CK) * [mm] \mathcal{P} [/mm] (CK) + [mm] \mathcal{P}(T|K) [/mm] * [mm] \mathcal{P} [/mm] (K)
= [mm] \mathcal{P} [/mm] (T|CK) * (1- [mm] \mathcal{P} [/mm] (K)) + [mm] \mathcal{P} [/mm] (T|K) * [mm] \mathcal{P} [/mm] (K)
Jetzt kann man daraus die Wahrscheinlichkeiten [mm] \delta [/mm] und r als Funktion von [mm] \alpha, \beta [/mm] und [mm] \gamma \in [/mm] (0,1) darstellen:
[mm] \delta:
[/mm]
[mm] \mathcal{P} [/mm] (CK|T) = [mm] \bruch{\mathcal{P} (T|CK) * \mathcal{P} (CK)}{\mathcal{P} (T)}
[/mm]
= [mm] \bruch{\mathcal{P} (T|CK) * (1- \mathcal{P} (K)}{\mathcal{P} (T)}
[/mm]
= [mm] \bruch{\mathcal{P} (T|CK) * (1- \mathcal{P} (K)}{\mathcal{P} (T|CK) * (1- \mathca{P} (K)) + \mathcal{P} (T|K) * \mathcal{P} (K)}
[/mm]
r:
[mm] \mathcal{P} [/mm] (K|CT) = [mm] \bruch{\mathcal{P} (CT|K) * \mathcal{P} (K)}{\mathcal{P} (CT)}
[/mm]
[mm] \mathcal{P} [/mm] (CT|K) + [mm] \mathcal{P} [/mm] (T|K) = [mm] \bruch{\mathcal{P} (CT \cap K) + \mathcal{P} (T \cap K)}{\mathcal{P} (K)}
[/mm]
= [mm] \bruch{\mathcal{P} ((CT \cap K) \cup (T \cap K)}{\mathcal{P} (K)}
[/mm]
= [mm] \bruch{\mathcal{P} (K \cap (CT \cup T}{\mathcal{P} (K)}
[/mm]
= [mm] \bruch{\mathcal{P} (K \cap \partial}{\mathcal{P} (K)}
[/mm]
= [mm] \bruch{\mathcal{P} (K)}{\mathcal{P} (K)} [/mm] =1
Dann folgt:
[mm] \mathcal{P} [/mm] (K|CT) = [mm] \bruch{(1- \mathcal{P} (T|K) * \mathcal{P} (K)}{1- \mathcal{P} (T)}
[/mm]
= [mm] \bruch{(1- \mathcal{P} (T|K) * \mathcal{P} (K)}{1- (\mathcal{P} (T|CK) * (1- \mathcal{P} (K)) + \mathcal{P} (T|K) * \mathcal{P} (K))}
[/mm]
Ich habe zu dem Aufgabenteil a) ein Paar Fragen:
1. Ist das im allgemeinen richtig, was ich da gemacht habe? Und vielleicht könnt ihr mir sagen, was die Raute (#) bei [mm] \gamma [/mm] zu bedeuten hat?
2. Bei den Wahrscheinlichkeiten [mm] \alpha, \beta, \gamma, \delta [/mm] und r ist es da egal, wie die Reihenfolge der Ausgangsausdrücke aussieht? Also zum Beispiel bei [mm] \alpha [/mm] kann da nicht statt [mm] \mathcal{P} [/mm] (T|CK) auch [mm] \mathcal{P} [/mm] (CK|T) stehen?
3. Warum stimmt diese Gleichung? [mm] \bruch{\mathcal{P} (K \cap \partial}{\mathcal{P} (K)}
[/mm]
= [mm] \bruch{\mathcal{P} (K)}{\mathcal{P} (K)}
[/mm]
Warum fällt das [mm] \partial [/mm] weg? Liegt es daran, dass beim Durchschnitt alle Ergebnisse auftreten und somit braucht man nur [mm] \mathcal{P} [/mm] (K) zu betrachten?
Wäre schön, wenn ihr mir helfen könntet :)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:27 Di 04.11.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|