Wahrscheinlichkeitsverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:05 So 08.03.2009 | Autor: | froehli |
Aufgabe | Ein Skatspiel hat 32 Karten, darunter vier Buben und acht Karokarten. Beim einmaligen Ziehen aus dem Kartenspiel seien die Ereignisse B:"Gezogene Karte ist BUbe" und K:"Die gezogene Karte ist eine Karokarte" gegeben.
a) Bestimmen sie die Wahrscheinlichkeit der Ereignisse
(1) B [mm] \cap [/mm] K,
(2) B [mm] \cup [/mm] K,
(3) [mm] \overline{B} \cup \overline{K}
[/mm]
(4) [mm] \overline{B \cup K}
[/mm]
b) Aus den 32 Karten werden auf gut Glück zwei Karten ohne Zurücklegen gezogen. DIe zweite gezogene Karte ist eine Karokarte.
Mit welcher Wahrschienlichkeit ist die erste gezogene Karte auch eine Karokarte?
c) Man zieht aus den 32 Kartena auf gut Glück eine Karte. Es ist ein Bube. Mit welcher Wahrscheinlichkeit ist eien zweite gezogene Karte auch ein Bube, wenn man die erste Karte:
(1) nicht zurückmischt,
(2) zurückmischt? |
Bei der Aufgabe scheitert es schon bei a.
Ich habe mir ein KV-Diagramm gemalt aber schaffe es nicht dieses komplett zu füllen.
P(K) sei [mm] \bruch{8}{32} [/mm] und P(B) [mm] \bruch{4}{32}
[/mm]
|
|
|
|
hallo,
zunächst mal: wie kommst du auf P(B)=4/65? 4 von 32 karten sind buben also is die wahrscheinlichkeit einen buben zu ziehen... nun zu (1) da trifft beim einmaligen ziehen ein, dass die gezogene karte sowohl karo als auch bube sein muss, dazu gibts wohl nur eine möglichkeit, den karobuben zu ziehen, also auch hier die wahrscheinlichkeit klar. bei (2) kann die gezogene karte entweder karo oder oder ein bube sein, es gibt 8 karos incl. dem karobuben, und dann noch 3 weitere buben, also 11 karten die die bedingung wohl erfüllen. bei (3) gibts dann wohl (32-11) mögliche karten und die (4) solltest du nun hinbekommen
viele grüße
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:32 So 08.03.2009 | Autor: | froehli |
Auch hier ist das ein wenig ungenau :/
Ich weiß einfach nicht wie ich das Mathmatisch richtig aufschreiben soll.
Die Logik dahinter und die bedeutung der Logischen Verknüpfungen sit mir klar.
Aber kann man die Aufgabe nicht über ein KV-Diagramm lösen?
Ist B [mm] \cap [/mm] K nun P(B) + P(K) oder P(B) * P(K)?
Ich hatte sonst bei soetwas immer ein KV-Diagramm aus dem ich die Einzelnen werte abgelesen habe um sie dort einzusetzen.
|
|
|
|
|
hallo,
also P(B [mm] \cap [/mm] K) ist das ereignis bei dem genau die ereignisse B und K gleichzeitig auftreten. das ergebnis kann man da direkt hinschreiben, es gibt 8 karokarten, und 4 buben im spiel, von den 8 karos ist ein karo, der karobube. da nun insgesamt im spiel 32 karten sind is die wk offensichtlich 1/32, ne mathematische formel gibts hierfür nicht, da muss man nur logisch denken. jedoch kann man die vereinigung P(B [mm] \cup [/mm] K) ausdrücken als P(B)+ P(K) - P(B [mm] \cap [/mm] K) den schnitt zieht man hier ab, weil er ansonsten doppelt vorhanden wäre, ich hoffe das hilft dir weiter. die vereinigung bedeutet einfach, dass entweder B oder K oder beides gleichzeitig auftritt
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:06 So 08.03.2009 | Autor: | froehli |
Ich bin jetzt bei (3)
da habe ich aufgeschrieben:
[mm] \overline{B} \cup \overline{K} [/mm] = [mm] P(\overline{B})+ P(\overline{K} [/mm] - [mm] \overline{B} \cap \overline{K} [/mm]
=
[mm] \bruch{28}{32} [/mm] + [mm] \bruch{24}{32} [/mm] - [mm] \bruch{21}{32}
[/mm]
= [mm] \bruch{31}{32}
[/mm]
Und das stimmt auch mit deiner berichtigen lösung überein.
und bei (4)
$ [mm] \overline{B \cup K} [/mm] $ = $ [mm] \overline{B} \cap \overline{K} [/mm] $
Also keine Buben und keine Karros.
24 Karten sind keine Karros, davon gibt es 4 Buben, also würde ich auf [mm] \bruch{20}{32} [/mm] tippen.
Richtig?
|
|
|
|
|
falsch, aber komischerweise hattest du es bei (3) noch richtig [mm] P(\overline{B} \cap \overline{K})=21/32, [/mm] bedenke dass unter den 4 buben sich der karobube befindet, der muss im schnitt natürlich rausgenommen werden, so dass du von 24 nicht-karo 3 buben die nicht der karo-bube sind abziehen musst
viele grüße
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:17 So 08.03.2009 | Autor: | ms2008de |
bei (3) muss es natürlich 32-1, (da ja nur der karobube nich in der menge enthalten wäre) sein statt 32-11 sorry, kleiner schreibfehler
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:53 So 08.03.2009 | Autor: | froehli |
Aufgabe | b) Aus den 32 Karten werden auf gut Glück zwei Karten ohne Zurücklegen gezogen. DIe zweite gezogene Karte ist eine Karokarte.
Mit welcher Wahrschienlichkeit ist die erste gezogene Karte auch eine Karokarte?
c) Man zieht aus den 32 Kartena auf gut Glück eine Karte. Es ist ein Bube. Mit welcher Wahrscheinlichkeit ist eien zweite gezogene Karte auch ein Bube, wenn man die erste Karte:
(1) nicht zurückmischt,
(2) zurückmischt? |
So ich habe nun Teil b vor mir liegen.
Ich versuche das nun mal mit dem Pascalischen Dreieck.
Dieses sagt mir, dass es nur eine möglichkeit gibt beim zweimaligen Ziehen auch zweimal die Karokarte zu ziehen.
Also rechne ich [mm] \bruch{8}{32}*\bruch{8}{32} [/mm] und habe die Wahrscheinlichkeit raus?
bei c wäre dass dann einmal
[mm] \bruch{4}{32}*\bruch{4}{32}
[/mm]
und einmal
[mm] \bruch{4}{32}*\bruch{3}{31}[/mm]
|
|
|
|
|
beachte, dass bei b die gezogene karte nich zurückgelegt wird. bei c bezieht sich jedenfalls das erste was du geschrieben hast auf (2) und das 2. auf (1)
|
|
|
|