www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wann welche Verteilung? (3)
Wann welche Verteilung? (3) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wann welche Verteilung? (3): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:49 Mo 26.03.2007
Autor: banandi

Aufgabe
2.) In den USA wird häufig das Glücksspiel „Chuck a Luck“ gespielt. Der Spieler setzt einen Dollar und darf mit drei Würfeln einen Wurf machen. Zeigt ein Würfel eine „Sechs“, so erhält er zwei Dollar, zeigen zwei Würfel eine „Sechs“, so erhält er drei Dollar und zeigen alle drei Würfel eine „Sechs“, so erhält er vier Dollar von der Spielbank.
Berechne den Erwartungswert des Gewinnes bzw. Verlustes, wenn 100 mal gespielt wird!

Für dieses Beispiel habe ich keinen Ansatz, oder fast nicht.
Am ehesten würde ich sagen binomial, weiß aber nicht wirklich warum.

Kann mir bitte jemand mit diesem Beispiel helfen?
Welche Erkennungsmerkmale gibt es für binomiale Verteilungen?

Vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wann welche Verteilung? (3): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mo 26.03.2007
Autor: hase-hh

moin,

hört sich ja eher wie eine hypergeometrische verteilung an.

eine binomialverteilung hat  genau zwei mögliche ergebnisse:

a) Treffer
b) Nicht-Treffer

also z.B. "6" oder "keine 6"; "Kopf" oder "Zahl"; "rote Kugel" oder "nicht-rote Kugel" (z.B. wenn man 3 rote, 4 grüne, 5 blaue und 6 weiße Kugeln hat)

kann in deinem beispielnicht erkennen, dass es nur zwei ergebnisse gibt!
es gibt doch:

- keine 6
- eine 6
- zwei 6
- drei 6.

man könnte das natürlich auch als dreistufiges zufallsexperiment auffassen...

aber das ganze soll ja insgesamt 100mal ablaufen.

zweite voraussetzung für binomialverteilung:

die wahrscheinlichkeit für einen treffer und für einen nicht-treffer bleiben bei jeder "runde" gleich.

dies ist hier sicher gegeben.

wie gesagt, denke hier eher an die hypergeometrische verteilung...

gruß
wolfgang













Bezug
                
Bezug
Wann welche Verteilung? (3): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mo 26.03.2007
Autor: banandi

Aber kann ich nicht für jedes einzelne, also für Wahrscheinlichkeit, dass eine 6, dann dass zwei 6en und dann dass drei 6en und dann alles zusammenzählen.
In diesem Fall könnte man sagen: Entweder 1 oder keine bzw. 2 oder keine bzw. 3 oder keine ... und dann wäre es doch binomial, oder nicht?

Hab noch zwei ähnliche Fragen gestellt, könntest du mir dabei vielleicht auch weiterhelfen? Bitte!

Bezug
        
Bezug
Wann welche Verteilung? (3): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mo 26.03.2007
Autor: banandi

Aufgabe
In den USA wird häufig das Glücksspiel „Chuck a Luck“ gespielt. Der Spieler setzt einen Dollar und darf mit drei Würfeln einen Wurf machen. Zeigt ein Würfel eine „Sechs“, so erhält er zwei Dollar, zeigen zwei Würfel eine „Sechs“, so erhält er drei Dollar und zeigen alle drei Würfel eine „Sechs“, so erhält er vier Dollar von der Spielbank.
Berechne den Erwartungswert des Gewinnes bzw. Verlustes, wenn 100 mal gespielt wird!

Hallo!

Kann mir jemand sagen, welche Verteilung ich für dieses Beispiel brauche. Ich würde am ehesten sagen binomial, weiß aber nicht genau warum.
Stimmt das? Kann mir jemand mit diesem Beispiel helfen?

Gibt es bestimmte Erkennungsmerkmale für Binomial-, Poisson- und hypergeometrische Verteilung?

Bitte helft mir!!!

Danke, lg banandi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
Wann welche Verteilung? (3): Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Di 27.03.2007
Autor: Mary15


> In den USA wird häufig das Glücksspiel „Chuck a Luck“
> gespielt. Der Spieler setzt einen Dollar und darf mit drei
> Würfeln einen Wurf machen. Zeigt ein Würfel eine „Sechs“,
> so erhält er zwei Dollar, zeigen zwei Würfel eine „Sechs“,
> so erhält er drei Dollar und zeigen alle drei Würfel eine
> „Sechs“, so erhält er vier Dollar von der Spielbank.
> Berechne den Erwartungswert des Gewinnes bzw. Verlustes,
> wenn 100 mal gespielt wird!
>
> Hallo!
>  
> Kann mir jemand sagen, welche Verteilung ich für dieses
> Beispiel brauche. Ich würde am ehesten sagen binomial, weiß
> aber nicht genau warum.
> Stimmt das? Kann mir jemand mit diesem Beispiel helfen?
>  
> Gibt es bestimmte Erkennungsmerkmale für Binomial-,
> Poisson- und hypergeometrische Verteilung?
>  
> Bitte helft mir!!!
>  
> Danke, lg banandi
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
es geht hier um eine Binomialverteilung, wenn wir nur ein Spiel betrachten
Pro Spiel wird dreimal geworfen und  gibt's 4 Ausgangsmöglichkeiten.
1. keine 6 - Verlust 1 Dollar
2. eine 6 - Gewinn 1 Dollar
3. zwei 6 - Gewinn 2 Dollar
4. drei 6 - Gewinn 3 Dollar
Weiter berechnen wir die Wahrscheinlichkeiten für jede Möglichkeit. Es geht hier um einen 3-stufigen Bernoulli-Versuch. Die Wahrscheinlichkeit für eine 6 pro Wurf [mm] p=\bruch{1}{6}, [/mm] q = 1-p = [mm] \bruch{5}{6} [/mm]

1. Verlust 1 Dollar P(-1) = [mm] \vektor{3 \\ 3}*(\bruch{1}{6})^0*(\bruch{5}{6})^3 [/mm] = [mm] \bruch{125}{216} [/mm]

2. Gewinn 1 Dollar  P(1) = [mm] \vektor{3 \\ 1}*(\bruch{1}{6})^1*(\bruch{5}{6})^2 [/mm] = [mm] \bruch{25}{72} [/mm]

2. Gewinn 2 Dollar  P(2) = [mm] \vektor{3 \\ 2}*(\bruch{1}{6})^2*(\bruch{5}{6})^1 [/mm] = [mm] \bruch{5}{72} [/mm]

2. Gewinn 3 Dollar  P(3) = [mm] \vektor{3 \\ 3}*(\bruch{1}{6})^3*(\bruch{5}{6})^0 [/mm] = [mm] \bruch{1}{216} [/mm]

Die Verteilung kann man jetzt in einer Tabelle abbilden:

X   |  -1    |  1  |  2   |    3   |
------------------------------------
P(x)|125/216 |25/72| 5/72 |  1/216 |

Jetzt kannst du den Erwartungswert pro Spiel berechnen.

E(x) = (-1)*125/216 + 1*25/72 + 2*5/72 + 3*1/216 = [mm] -\bruch{17}{216} [/mm]

Nun es wird 100 mal gespielt. Wir können ein Spiel als Stichprobe betrachten mit dem Erwartungswert E(x) und den Erwartungswert für die Grundgesamheit schätzen.
Zu welchem Thema ist diese Aufgabe?




Bezug
                
Bezug
Wann welche Verteilung? (3): Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Di 27.03.2007
Autor: VNV_Tommy

Hallo babandi!

> Gibt es bestimmte Erkennungsmerkmale für Binomial-,
> Poisson- und hypergeometrische Verteilung?

Diese Frage hatte sich mir auch mal gestellt und ich habe mir dazu was erarbeitet:

Grundsätzlich wird zwischen diskreten und kontinuierlichen Verteilungen unterschieden.

Diskrete Verteilungen

- angewendet bei Merkmalen, die zählbar sind (Stück, Anzahl fehlerhafter Teile etc.)

Hypergeometrische Verteilung
o Wenn die Wahrscheinlichkeit für Anzahl von fehlerhaften Teilen x in einer Stichprobe gesucht ist

o Es muss gegeben sein:
N (Größe der Grundgesamtheit GG)
d (Anzahl der Merkmalsträger in GG)
n (Stichprobenumfang)
x (Anzahl der Merkmalsträger in der Stichprobe)

Typisches Beispiel:
Gegeben sind 100 Kugeln, davon sind 20 schwarz, der Rest ist weiß. Wie groß ist die Wahrscheinlichkeit, dass bei einer Stichprobe (einmaliges ziehen) von 15 Kugeln genau 3 schwarz sind?

Binomialverteilung
o Wenn gefragt ist, wie hoch die Wahrscheinlichkeit ist, dass bei n Versuchen ein Ereignis A x-mal realisiert wird (Ziehen MIT zurücklegen, da sich sonst GG ändert!)

o Es muss gegeben sein:
N (Größe der Grundgesamtheit GG)
n (Stichprobenumfang)
x (Anzahl der Merkmalsträger in der Stichprobe)
p (Wahrscheinlichkeit mit der das Merkmal in der GG auftritt)

o Bedingungen für die Anwendung:
n<(N/10) (Stichprobenumfang muss weniger als 10% der GG umfassen)

o Versagt, wenn n sehr groß und p sehr klein à dann lieber Poisson-Verteilung nehmen

Typisches Beispiel:
In einer Urne sind 100 Kugeln; 20 davon sind schwarz, der Rest sei weiß. Wie hoch ist die Wahrscheinlichkeit, dass bei 5-maligem Ziehen jeweils eine schwarze Kugel gezogen wird?

Poisson-Verteilung
o Wenn gefragt ist, wie wahrscheinlich es ist, wie oft ein Ereignis in einem Intervall auftritt

o Es muss gegeben sein:
n (Stichprobenumfang)
p (Wahrscheinlichkeit des Eintretens des Merkmals)

o Bedingungen für Anwendung:
n > 20
p < 5% (=0,05)

Typisches Beispiel:
Von einem Prozess sei bekannt: Der Prozess ist aus 7 Teilprozessen (Aktivitäten) zusammengesetzt. Innerhalb des Gesamtprozesses kommt es in der Regel zu 11 Fehlern. Wie hoch ist die Wahrscheinlichkeit, dass innerhalb eines Teilprozesses 4 Fehler auftreten?



Kontinuierliche Verteilungen

- angewendet bei Merkmalen, die messbar sind (Länge, Zeit, Gewicht, etc.)

· Normalverteilung
· Parametrische Verteilungen
T-Verteilung
Chi-Quadrat-Verteilung
F-Verteilung



Hoffe das hilft dir ein bisschen weiter. :-)

Gruß,
Tommy

Bezug
                        
Bezug
Wann welche Verteilung? (3): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 27.03.2007
Autor: banandi

Vielen Dank für eure Hilfe.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]