www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Welcher Weg?
Welcher Weg? < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Welcher Weg?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Sa 13.06.2009
Autor: Dinker

Aufgabe
Wir erzielen in 6 Würfen mit dem Würfel genau eine 6.

Hallo

Ich habe generell ein Problem, wie ich vorgehen soll. Denn bei fast allen Wahrscheinlichkeitsaufgaben bieten sich zwei Möglichkeiten an:


Weg über Wahrscheinlichkeit
[mm] 6\overline{6}\overline{6}\overline{6}\overline{6}\overline{6} [/mm] = [mm] \bruch{1}{6} [/mm] * [mm] (\bruch{5}{6})^{5} [/mm] * 6 = 0.4018

Über Möglichkeit
P(E) = [mm] \bruch{g}{m} [/mm]

P(g) = 1 * [mm] 5^{5} [/mm] * 6 = 18750

p(m) = [mm] 6^{6} [/mm] = 46656

P(E) = [mm] \bruch{18750}{46656} [/mm] = 0.4018

Welcher Weg bietet sich nun eher an?

Danke
Gruss Dinker

        
Bezug
Welcher Weg?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Sa 13.06.2009
Autor: M.Rex

Hallo

Solche Aufgaben würde ich mit MBBernoulli-Versuch lösen, also deinem ersten Vorschlag.
Dann gilt.  $ [mm] P(X=k)={n\choose k}p^k(1-p)^{n-k}. [/mm] $

Und das ist definitiv leichter, als jedesmal die "günstigen" und "alle" Möglichkeiten zu ermitteln.

Marius

Bezug
        
Bezug
Welcher Weg?: Binomial-Verteilung
Status: (Antwort) fertig Status 
Datum: 17:36 So 14.06.2009
Autor: informix

Hallo Dinker,

> Wir erzielen in 6 Würfen mit dem Würfel genau eine 6.
>  Hallo
>  
> Ich habe generell ein Problem, wie ich vorgehen soll. Denn
> bei fast allen Wahrscheinlichkeitsaufgaben bieten sich zwei
> Möglichkeiten an:
>  
>
> Weg über Wahrscheinlichkeit
>  
> [mm]6\overline{6}\overline{6}\overline{6}\overline{6}\overline{6}[/mm]
> = [mm]\bruch{1}{6}[/mm] * [mm](\bruch{5}{6})^{5}[/mm] * 6 = 0.4018
>  
> Über Möglichkeit
>  P(E) = [mm]\bruch{g}{m}[/mm]
>  
> P(g) = 1 * [mm]5^{5}[/mm] * 6 = 18750

Das solltest du so nicht schreiben: P(..) steht für Wahrscheinlichkeit von...
Du berechnest aber nur Anzahlen: $$g=1 * [mm] 5^{5} [/mm] * 6 = 18750$$

>  
> p(m) = [mm]6^{6}[/mm] = 46656

ebenso: $m = [mm] 6^{6}= [/mm] 46656$

>  
> P(E) = [mm]\bruch{18750}{46656}[/mm] = 0.4018 [ok]
>  
> Welcher Weg bietet sich nun eher an?

Der zweite Weg kann gelegentlich sehr mühsam sein.

Wenn es also nur zwei Ergebnisse ( 6 oder "nicht 6") gibt, ist stets die MBBernoulli-Verteilung anzusetzen.


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]