Welches Filter im Oszilloskop? < Technik < Ingenieurwiss. < Vorhilfe
|
|
Status: |
(Antwort) fertig | Datum: | 22:19 Sa 11.11.2006 | Autor: | chrisno |
Hallo Bastiane,
Mit einem idealen Rechteckimpuls löst Du in etwa die sogenannte "Sprungantwort" des Filters aus. Nur dass duch die pperiodische Wiederholung das zu einer "Rechteckantwort" wird. Mathematisch reduziert das ein
Fourierintegral auf eine Fourierreihe.
Ein Rechteckimpuls wird im wesentlichen durch eine Fourierreihe
$y(t) = [mm] a*(sin(\omega [/mm] t) + [mm] \bruch{1}{3} [/mm] sin(3 [mm] \omega [/mm] t) + [mm] \bruch{1}{5} [/mm] sin(5 [mm] \omega [/mm] t) ...$
dargestellt. Dein Filter dämpft die verscheidenen Frequenzen unterschiedlich stark, also ändern sich die Vorfaktoren der einzelnen Terme. Wenn Du die Kurvenform auf dem Osszillografen Fourier-anaylsiert, erhälst Du die Fourierkoeffizienten (Vorfaktoren) und kannst daran ablesen, um wieviel welche der Frequenzen gedämpft (oder verstärkt) wird.
Meistens nimmt man anstelle der Fouriertransformation die Laplace-.
Exponentiellen Abfall prüfst Du nach der Eigenschaft: gleicher Schritt in x führt zu gleichem Quotienten in y (bezogen auf die richtige Nulllinie).
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:12 So 12.11.2006 | Autor: | Bastiane |
Hallo chrisno!
Vielen Dank für die Antwort.
> Mit einem idealen Rechteckimpuls löst Du in etwa die
> sogenannte "Sprungantwort" des Filters aus. Nur dass duch
> die pperiodische Wiederholung das zu einer
> "Rechteckantwort" wird. Mathematisch reduziert das ein
> Fourierintegral auf eine Fourierreihe.
>
> Ein Rechteckimpuls wird im wesentlichen durch eine
> Fourierreihe
> [mm]y(t) = a*(sin(\omega t) + \bruch{1}{3} sin(3 \omega t) + \bruch{1}{5} sin(5 \omega t) ...[/mm]
>
> dargestellt. Dein Filter dämpft die verscheidenen
> Frequenzen unterschiedlich stark, also ändern sich die
> Vorfaktoren der einzelnen Terme. Wenn Du die Kurvenform auf
> dem Osszillografen Fourier-anaylsiert, erhälst Du die
> Fourierkoeffizienten (Vorfaktoren) und kannst daran
> ablesen, um wieviel welche der Frequenzen gedämpft (oder
> verstärkt) wird.
> Meistens nimmt man anstelle der Fouriertransformation die
> Laplace-.
Ich glaube, es reichte herauszufinden, ob es ein Hoch- oder ein Tiefpassfilter war (jedenfalls hoffe ich das, bin bisher gar nicht auf die Idee gekommen, dass man da noch mehr hätte herausfinden können), und ich habe mir nur kurz grob aufgezeichnet, wie die Antwort aussah. Zahlenwerte habe ich nicht, deswegen kann ich wohl auch schlecht eine Fourieranalyse machen. Und mit meinen wenigen "Werten" (also der Eckfrequenz und dem groben Verlauf) kann ich es wohl nicht anders bestimmen!?
> Exponentiellen Abfall prüfst Du nach der Eigenschaft:
> gleicher Schritt in x führt zu gleichem Quotienten in y
> (bezogen auf die richtige Nulllinie).
Ich weiß zwar nicht, was du mit Nulllinie meinst, aber wenn ich dich richtig verstehe ist das die normale Eigenschaft einer Exponentialfunktion - gleicher "Abfall" in gleichen Intervallen, so wie nach der Halbwertszeit immer genau die Hälfte von dem vorherigen Wert zerfallen ist. Dann hat diese "Prüfung" aber nichts mit dem Oszilloskop zu tun, außer, dass ich da gucken und zählen könnte, ob diese Eigenschaft gilt!?
Ich hatte ansonsten noch überlegt, dass man natürlich auch das Amplitudenspektrum berechnen und in ein Bodediagramm zeichnen könnte. Da man da auf der x-Achse ja eine logarithmische Einteilung hat, ergäbe sich bei einer Exponentialfunktion eine Gerade. Aber das schein mir ein bisschen umständlich (auch wenn ich es nicht machen muss).
Dann hatte ich noch überlegt, ob es vielleicht irgendwas mit der Eigenschaft des Kondensators und speziell des Hochpasses zu tun haben könnte, da dort ja für die Ausgangsspannung gilt: [mm] U_a(t)=U_0(t)*e^{-\frac{t}{RC}}
[/mm]
Ich hab' überglegt, ob da dann irgendwas wegfallen könnte, aber das kam bei mir nicht hin...
Vielleicht hat ja noch jemand eine Idee...
Viele Grüße
Bastiane
P.S.: Eigentlich interessieren mich Antworten hierauf noch etwas länger, allerdings ab morgen vormittag keine allzu ausführliche mehr.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:04 So 12.11.2006 | Autor: | leduart |
Hallo Bastiane
Wenn sich das typische Bild eines Hochpassfilters ergibt, ist auch einer drin.
Du sollst doch wohl wirklich "feststellen" obs ne exp. Funktion ist. Dann ist chrisnos Antwort die richtige.
Erwarten kannst du eine wegen des Kondensators!
Gruss leduart
|
|
|
|