Wellen in Gleichungen < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | A6)a) Zeigen Sie mithilfe der Wellengleichung: Für t und t+T bzw. für x und x+[mm]\lambda[/mm] ergeben sich gleiche Schwingungszustände (Periodizität einer Welle in Raum und Zeit). b) Zeigen Sie, dass auch die Gleichung s(t;x)=[mm]\hat s[/mm]*sin[ [mm]\omega[/mm](t-(x/c))] eine From der Wellengleichung ist. Leiten Sie dann hieraus c=[mm]\lambda[/mm]f her. |
Hi,
Hilfe: Wellengleichung (Eine Form davon, wahrscheinlich die, die man braucht)
s(t;x)= [mm] \hat s[/mm] * sin[2 [mm] \pi(t/T-x/[/mm] [mm] \lambda[/mm])].
Als Lösung:
s(t+T,x)=[mm] \hat s[/mm] * sin[2 [mm] \pi(1+t/T-x/[/mm] [mm] \lambda[/mm])]
=[mm] \hat s[/mm] * sin(t/T-x/[mm] \lambda[/mm])=s(t;x)
Wahrscheinlich hat er t durch t+T ersetzt und dann kürzt sich da t/t=1 okay..
Ähnliche Lösung zu a2).
Ok um meine Frage zu konkretisieren, wie die ( 1 +..) zustande kommt ok, aber wie hat Mr.Copperfield die 2*PI verschwinden lassen ?^2
unten steht noch in der Lösung sin(PI)=sin(PI+2*PI)=sin(PI-2*PI)
sollte mir das irgendwie helfen..?
b) K.A.
Danke schon mal.
|
|
|
|
Hallo MacChevap,
ich kann nicht 100% erkennen, was du zu Teil a) eigentlich fragst. Ich versuche mal eine Antwort zu geben:
$s(t+T,x)$ = [mm] $\hat{s}$ $\cdot$ $\sin[2\pi($ $\frac{t+T}{T}$ [/mm] - [mm] $\frac{x}{\lambda}$ [/mm] $)]$ =
= [mm] $\sin[2\pi(1+$ $\frac{t}{T}$ [/mm] - [mm] $\frac{x}{\lambda}$ [/mm] $)]$ =
= [mm] $\sin[2\pi+2\pi($ $\frac{t}{T}$ [/mm] - [mm] $\frac{x}{\lambda}$ [/mm] $)]$ =
= [mm] $\sin[2\pi($ $\frac{t}{T}$ [/mm] - [mm] $\frac{x}{\lambda}$ [/mm] $)]$ = $s(t,x)$
So wird die Eins herbei- und [mm] 2\pi [/mm] weggezaubert.
Bei Teil b) musst du [mm] \omega [/mm] durch [mm] \frac{2\pi}{T} [/mm] ersetzen, dann entsteht wieder die alte Beschreibung des Schwingungszustandes. Weißt du, dass [mm] $f=\frac{1}{T}$? [/mm] Damit kannst du die letzte Frage beantworten.
Hugo
|
|
|
|