www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Wertemenge
Wertemenge < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertemenge: Bestimmung der Wertemenge
Status: (Frage) beantwortet Status 
Datum: 14:01 Di 31.10.2006
Autor: MontBlanc

Hallo,

also wenn ich bei einer Aufgabe die Wertemenge bestimmen, soll heißt das, dass ich angebe, welche y-werte bei graphen dieser funktion vorkommen.

Ich bestimme die Wertemenge auch ziemlich sicher, also Graph zeichnen und dann gucken... aber ich würde gerne wissen wie man die Wertemenge einer Funktion rechnerisch bestimmt. Wäre super wenn mir da jemand hilft, oder mir die Tomaten von den Augen nimmt, falls ich wieder etwas völlig eindeutiges übersehe.

Vielen dank

Bis denn  

        
Bezug
Wertemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Di 31.10.2006
Autor: Nienor

Hi,
also das ist keine vollständige Antwort, aber du kannst verschiedene Faktoren berücksichtigen:
Zum ersten die Extrema: Wenn es nur einen Hoch oder Tiefpkt. gibt, kannst du davon ausgehen, dass es oberhalb bzw. unterhalb davon keine y-Werte mehr gibt.
Außerdem kannst du ja berechnen ob es Polstelen gibt, die falen dann natürlich auch raus.
Aber da gibt's bestimmt auch noch andere Varianten!
Gruß, Anne

Bezug
                
Bezug
Wertemenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Di 31.10.2006
Autor: MontBlanc

Huhu,

ja das war mir schon klar, so würde ich es auch machen. Aber da wir das in der Schule noch nicht hatten, sollen wir das anders bestimmen. Geht das ?
Ich habe mir diese ganze sache mit den tief und hochpkt. mehr oder weniger selbst beigebracht.

Bis denne

Bezug
        
Bezug
Wertemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 31.10.2006
Autor: M.Rex

Hallo

Ich denke es iist am sinnvollsten, die Grenzwertbetrachtung der Funktion vorzunehmen. Dieses machst du auf jeden Fall für [mm] \pm\infty [/mm] und evtl. noch an Polstellen.

Dann siehst du, ob y Werte aus ganz [mm] \IR [/mm] annimmt, oder nicht.

Klar gibt es Indikatoren.

Z.B. haben y=x², [mm] x^{n} [/mm] mit geradem n oder [mm] y=e^{x} [/mm] nur Werte in [mm] \IR^{+}, e^{x}, [/mm] sogar in [mm] \IR^{+}/\{0\} [/mm]


Marius





Bezug
                
Bezug
Wertemenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 31.10.2006
Autor: MontBlanc

Huhu Marius,

dazu habe ich nochmal eine Frage, ich meine ich weiß so einigermaßen wie man extremstellen und so weiter ausrechnet, aber wie genau funktioniert eine Grenzwertbetrachtung [mm] \pm\infty [/mm] ? Dieses [mm] \infty [/mm] habe ich so noch nicht verstanden, also ich weiß, dass es unendlich heißt, aber wie genau läuft das dann ab ? Könntest du das vll an einem Beispiel erklären ?

Dankeschön

Exeqter

Bezug
                        
Bezug
Wertemenge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Di 31.10.2006
Autor: M.Rex

Nehmen wir z.B. mal die Funktionen [mm] f(x)=x^{5} [/mm] und [mm] g(x)=x^{4} [/mm]

Zu [mm] g(x)=x^{4}. [/mm]

Wenn du jetzt mal x ganz weit ins negative laufen lässt, also gegen [mm] -\infty, [/mm] wird der Funktionswert g(x) immer grösser, er läuft also gegen [mm] \red{+}\infty. [/mm]


Jetzt lass mal x immer grösser werden, also gegen [mm] +\infty [/mm] laufen. Auch hier wird der Funktionswert g(x) immmer grösser, also läuft g(x) auch gegen [mm] +\infty. [/mm]

Dies schreibt man wie folgt:

[mm] g(x)\to+\infty [/mm] für [mm] x\to-\infty [/mm]
und [mm] g(x)\to+\infty [/mm] für [mm] x\to+\infty [/mm]

Das heisst, es gibt unterhalb des Tiefpunktes im Ursprung keinen y-Wert mehr, der von g(x) angenommen wird. Also ist der Wertebereich [mm] W=\IR^{+} [/mm]

Zu [mm] f(x)=x^{5} [/mm]

Hier gilt, mit der selben Erklärung wie oben.
[mm] f(x)\to-\infty [/mm] für [mm] x\to-\infty [/mm]
[mm] f(x)\to+\infty [/mm] für [mm] x\to+\infty [/mm]

Also läuft der Graph von [mm] -\infty [/mm] bis [mm] \infty, [/mm] so dass gilt:
[mm] W=\IR [/mm]

Als drittes Beispiel mal [mm] e^{x} [/mm]

Hier gilt:

[mm] e^{x}\to\red{0} [/mm] für [mm] x\to-\infty [/mm]
[mm] e^{x}\to+\infty [/mm] für [mm] x\to+\infty [/mm]

Also gilt:
[mm] W=\IR^{+}/\{0\} [/mm] , da 0 nie erreicht wird.

Marius

Bezug
                                
Bezug
Wertemenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Di 31.10.2006
Autor: MontBlanc

Hi,

super vielen dank, hast du super erklärt =)).

Bis demnächst

exeqter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]