www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Wie sieht Jordan aus?
Wie sieht Jordan aus? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie sieht Jordan aus?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Mi 01.07.2009
Autor: T_sleeper

Aufgabe
Sei [mm] A\in (8\times 8,\mathbb{R}) [/mm] gegeben, mit charackteristischem Polynom [mm] \chi_A=T^8-T^7 [/mm]
und es sei:
dimKer(A)=3, [mm] dimKer(A^2)=5\, dimKer(A^3)=6, dimKer(A^4)=7, dimKer(A^5)=7. [/mm]

Wie sieht die Jordansche Normalform von A aus?  

Hallo,

allgemein eine erstmal einfache Aufgaben.
Aus [mm] \chi_A(T)=0 [/mm] erhält man die Eigenwerte [mm] T_1=0, T_2=1. [/mm]

So jetzt kann ich bzgl. des Eigenwerts 0 aus den Angaben über die Kerne folgern, dass ich 3 Jordankästchen erhalte. Die Partition sähe so aus P=(3,1,1), wobei jeder Eintrag für eine [mm] n\times [/mm] n Matrix steht.

Diese Partition liefert mir eine [mm] 5\times [/mm] 5 Matrix. Logischerweise muss die Jordan Form auch eine [mm] 8\times [/mm] 8 Matrix sein.
Fülle ich den Rest dann einfach mit meinem Eigenwert 1 auf? Erhalte ich also ein Jordankästchen zum Eigenwert 1 bestehend aus einer [mm] 3\times [/mm] 3 Matrix?
Ich besitze ja keine Informationen über den dimKern(A-E). Kann ich diese irgendworaus folgern?

Ich würde sagen es ist: [mm] J=$\begin{pmatrix}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{pmatrix}$ [/mm]

        
Bezug
Wie sieht Jordan aus?: Antwort
Status: (Antwort) fertig Status 
Datum: 03:04 Mi 01.07.2009
Autor: felixf

Hallo!

> Sei [mm]A\in (8\times 8,\mathbb{R})[/mm] gegeben, mit
> charackteristischem Polynom [mm]\chi_A=T^8-T^7[/mm]
>  und es sei:
>  dimKer(A)=3, [mm]dimKer(A^2)=5\, dimKer(A^3)=6, dimKer(A^4)=7, dimKer(A^5)=7.[/mm]
>  
> Wie sieht die Jordansche Normalform von A aus?
> Hallo,
>  
> allgemein eine erstmal einfache Aufgaben.
>  Aus [mm]\chi_A(T)=0[/mm] erhält man die Eigenwerte [mm]T_1=0, T_2=1.[/mm]

Genau, und zwar mit algebraischen Vielfachheiten 7 und 1.

> So jetzt kann ich bzgl. des Eigenwerts 0 aus den Angaben
> über die Kerne folgern, dass ich 3 Jordankästchen
> erhalte.

Richtig.

> Die Partition sähe so aus P=(3,1,1), wobei jeder
> Eintrag für eine [mm]n\times[/mm] n Matrix steht.

Nein, dem ist nicht so.

> Diese Partition liefert mir eine [mm]5\times[/mm] 5 Matrix.

Allein deswegen kann es schon nicht sein: die Matrix muesste das Format $7 [mm] \times [/mm] 7$ haben, da der Eigenwert die algebraische Vielfachheit 7 hat.

> Logischerweise muss die Jordan Form auch eine [mm]8\times[/mm] 8
> Matrix sein.

Weil $A$ eine $8 [mm] \times [/mm] 8$-Matrix ist.

>  Fülle ich den Rest dann einfach mit meinem Eigenwert 1
> auf?

Im Allgemeinen nicht.

Aber fuer einen $1 [mm] \times [/mm] 1$-Block mit Eigenwert 1 gibt es nur genau eine Moeglichkeit.

LG Felix


Bezug
                
Bezug
Wie sieht Jordan aus?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mi 01.07.2009
Autor: T_sleeper

  
> Aber fuer einen [mm]1 \times 1[/mm]-Block mit Eigenwert 1 gibt es
> nur genau eine Moeglichkeit.
>  
> LG Felix
>  

Okay, aber wie sieht dann meine Partition bzgl. des Eigenwerts 0 aus, also die [mm] 7\times [/mm] 7 Matrix?

Ich hatte mich oben vertan. Es ist p'=(3,5-3,6-5,7-6)=(3,2,1,1), demnach bekäme ich ja auch eine [mm] 7\times [/mm] 7 Matrix mit der Partition p=(4,2,1) richtig?


Bezug
                        
Bezug
Wie sieht Jordan aus?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mi 01.07.2009
Autor: angela.h.b.


> eine [mm]7\times[/mm] 7 Matrix mit der Partition p=(4,2,1) richtig?

Hallo,

das ist richtig.

Gruß v. Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]