www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wieviele Differenzen aus acht
Wieviele Differenzen aus acht < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wieviele Differenzen aus acht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Fr 12.12.2014
Autor: notinX

Hallo,

ich habe Kombinatorik in der Schule schon nicht gemocht und damals auch nicht wirklich verstanden. Meine Hoffnung, damit nie wieder etwas zu tun zu haben hat sich leider nicht bewahrheitet. Hier mein Problem:
Ich habe acht verschiedene, aufsteigende Werte [mm] $a_1,\ldots ,a_8$ [/mm] mit [mm] $a_1 Ich glaube, das nennt man Permutationen, aber bei der Frage ob das jetzt mit oder ohne "zurücklegen" ist bin ich schon überfordert.
Kann mir jemand helfen?

Gruß,

notinX

        
Bezug
Wieviele Differenzen aus acht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 12.12.2014
Autor: Arvi-Aussm-Wald

Hallo, 
> ich habe Kombinatorik in der Schule schon nicht gemocht und
> damals auch nicht wirklich verstanden. Meine Hoffnung,
> damit nie wieder etwas zu tun zu haben hat sich leider
> nicht bewahrheitet.

Das kenn ich auch, manchmal wird man von der Vergangenheit schnell wieder eingeholt.. :D
Hier mein Problem:

> Ich habe acht verschiedene, aufsteigende Werte [mm]a_1,\ldots ,a_8[/mm]
> mit [mm]a_1
> unterschiedliche Möglichkeiten es gibt positive
> Differenzen [mm]d_{ij}=a_j-a_i[/mm] ungleich 0, also [mm]i\neq j[/mm] zu
> bilden.

Ok, du willst nur positive Differenzen, also gilt aufgrund der aufsteigenden Ordnung [mm]a_{j}>a_{i}[/mm]

> Ich glaube, das nennt man Permutationen, aber bei der
> Frage ob das jetzt mit oder ohne "zurücklegen" ist bin ich
> schon überfordert.

Das kann man sich eigentlich recht leicht überlegen. Nehmen wir einfach mal an, dass die a alle Zahlen von 1 bis 8 darstellen.
Wie viele Differenzen gibt es dann beginnend mit der 8? Richtig! 7 Stück, nämlich 8-1, 8-2, 8-3, 8-4, 8-5, 8-6 und 8-7.

Wie viele Differenzen gibt es z.B. für 4? Richtig! 3, nämlich  4-3, 4-2, 4-1.

Für jedes [mm] a_{i} [/mm] gibt es also i-1 Möglichkeiten

> Kann mir jemand helfen?

>

> Gruß,

>

> notinX

Bezug
                
Bezug
Wieviele Differenzen aus acht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Fr 12.12.2014
Autor: notinX

Klar, das Ergebnis ist einfach die Summe [mm] $\sum_{i=1}^{k-1}n$ [/mm] wenn k die Anzahl der Werte, in meinem Fall $k=8$ und [mm] $n=1,2,3,\ldots$ [/mm] ist.
Du solltest Lehrer werden ;P

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]