Wohldefiniert < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien X = {1,2,...,10}, Y = {1,...,6}und W = {1,...,5}. Des Weiteren seien [mm]f: X \to Y[/mm], [mm]g: W \to X[/mm] und [mm]h: W \to X[/mm] gegeben durch:
[mm]f(x):=\left\{\begin{matrix}
x/2, & \mbox{wenn }x\mbox{ gerade} \\
(x+1)/2, & \mbox{wenn }x\mbox{ ungerade}
\end{matrix}\right. [/mm]
[mm]g(w)=2w[/mm]
[mm]h(w)=2w-1[/mm]
Zeigen Sie, dass es such um drei wohldefinierte Abbildungen handelt. Ist f Injektiv, surjektiv oder beides? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hey:)
Ich habe vor kurzem mit dem Mathematikstudium begonnen und habe leider noch einzige Schwierigkeiten mit der Beweisführung und wie ich diesen dann am Ende aufschreiben soll. Ich erkenne, dass alle 3 Abbildungen wohldefiniert sind und dass f weder surjektiv, noch Injektiv ist, bin mir aber unsicher wie ich das nun zeigen soll.. Mein bester "Ansatz" wäre bis jetzt:
Setze [mm]X_{1}:=\left\{x | x=2m \le 10 \land m \in \IN\right\} [/mm] und [mm]X_{2}:=\left\{x | x=2m-1\le 10 \land m \in \IN\right\} [/mm], dann ist [mm]X=X_{1}\cup X_{2} [/mm] disjunkte Vereinigung von [mm]X_{1}[/mm] und [mm]X_{2}[/mm]und f lässt sich schreiben als:
[mm]f(x):=\left\{\begin{matrix}
x/2, & \mbox{wenn }x\in X_{1} \\
(x+1)/2, & \mbox{wenn }x\in X_{2}
\end{matrix}\right. [/mm]
Und es gilt:
[mm] f(x)=f(2m)=\frac{2m}{2}=m [/mm] für alle [mm] x \in X_{1}[/mm]
[mm] f(x)=f(2m-1)=\frac{(2m-1)+1}{2}=m [/mm] für alle [mm] x \in X_{2}[/mm]
Des Weiteren ist:
[mm]2\le 2m \le 10 \Longleftrightarrow 1\le m \le 5[/mm]
[mm]1\le 2m-1 \le 9 \Longleftrightarrow 1\le m \le 5[/mm]
Aus [mm] m \in \IN [/mm] und [mm]1\le m \le 5[/mm] folgt:
[mm]f(X) = W \subset Y[/mm]
Also ist f wohldefiniert, aber nicht surjektiv. Aufgrund von [mm]\left| X \right| > \left| W \right| [/mm]kann f auch nicht Injektiv sein.
Aus dem Zusammenhang
[mm] f(x) = f(2m)=f(2w)=f(g(w))=w [/mm] für [mm]m=w[/mm] und [mm]m,w \in W[/mm]
[mm] f(x) = f(2m-1)=f(2w-1)=f(h(w))=w [/mm] für [mm]m=w[/mm] und [mm]m,w \in W[/mm]
folgt, dass g und h ebenfalls wohldefiniert sein müssen.
Irgendwie kommt mir das viel zu kompliziert vor und bin mir da noch total unsicher. Bin für jede Hilfe dankbar:(
VG
maggie
|
|
|
|
Hallo maggie und ,
> Es seien X = {1,2,...,10}, Y = {1,...,6}und W = {1,...,5}.
> Des Weiteren seien [mm]f: X \to Y[/mm], [mm]g: W \to X[/mm] und [mm]h: W \to X[/mm]
> gegeben durch:
>
> [mm]f(x):=\left\{\begin{matrix}
x/2, & \mbox{wenn }x\mbox{ gerade} \\
(x+1)/2, & \mbox{wenn }x\mbox{ ungerade}
\end{matrix}\right.[/mm]
>
> [mm]g(w)=2w[/mm]
> [mm]h(w)=2w-1[/mm]
> Zeigen Sie, dass es such um drei wohldefinierte
> Abbildungen handelt. Ist f Injektiv, surjektiv oder
> beides?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hey:)
>
> Ich habe vor kurzem mit dem Mathematikstudium begonnen und
> habe leider noch einzige Schwierigkeiten mit der
> Beweisführung und wie ich diesen dann am Ende aufschreiben
> soll. Ich erkenne, dass alle 3 Abbildungen wohldefiniert
> sind und dass f weder surjektiv, noch Injektiv ist,
> bin mir
> aber unsicher wie ich das nun zeigen soll.. Mein bester
> "Ansatz" wäre bis jetzt:
>
> Setze [mm]X_{1}:=\left\{x | x=2m \le 10 \land m \in \IN\right\}[/mm]
> und [mm]X_{2}:=\left\{x | x=2m-1\le 10 \land m \in \IN\right\} [/mm],
> dann ist [mm]X=X_{1}\cup X_{2}[/mm] disjunkte Vereinigung von [mm]X_{1}[/mm]
> und [mm]X_{2}[/mm]und f lässt sich schreiben als:
>
> [mm]f(x):=\left\{\begin{matrix}
x/2, & \mbox{wenn }x\in X_{1} \\
(x+1)/2, & \mbox{wenn }x\in X_{2}
\end{matrix}\right.[/mm]
>
> Und es gilt:
>
> [mm]f(x)=f(2m)=\frac{2m}{2}=m[/mm] für alle [mm]x%2520%255Cin%2520X_%257B1%257D[/mm]
>
> [mm]f(x)=f(2m-1)=\frac{(2m-1)+1}{2}=m[/mm] für alle [mm]x \in X_{2}[/mm]
>
> Des Weiteren ist:
> [mm]2\le 2m \le 10 \Longleftrightarrow 1\le m \le 5[/mm]
> [mm]1\le 2m-1 \le 9 \Longleftrightarrow 1\le m \le 5[/mm]
>
> Aus [mm]m \in \IN[/mm] und [mm]1\le m \le 5[/mm] folgt:
> [mm]f(X) = W \subset Y[/mm]
> Also ist f wohldefiniert, aber nicht
> surjektiv. Aufgrund von [mm]\left| X \right| > \left| W \right| [/mm]kann
> f auch nicht Injektiv sein.
> Aus dem Zusammenhang
> [mm]f(x) = f(2m)=f(2w)=f(g(w))=w[/mm] für [mm]m=w[/mm] und [mm]m,w \in W[/mm]
> [mm]f(x) = f(2m-1)=f(2w-1)=f(h(w))=w[/mm]
> für [mm]m=w[/mm] und [mm]m,w \in W[/mm]
>
> folgt, dass g und h ebenfalls wohldefiniert sein müssen.
>
>
> Irgendwie kommt mir das viel zu kompliziert vor und bin mir
> da noch total unsicher. Bin für jede Hilfe dankbar:(
Boah, das ist ja mächtig umständlich.
Es genügt doch je ein Gegenbsp. anzugeben.
Wegen [mm]f(1)=f(2)=1[/mm] kann [mm]f[/mm] nicht injektiv sein, und da [mm]6\in Y[/mm] kein Urbild in [mm]X[/mm] unter [mm]f[/mm] hat, ist es auch nicht surjektiv ...
>
>
>
> VG
>
>
> maggie
Gruß
schachuzipus
|
|
|
|
|
Vielen dank für die schnelle Antwort:)
Dass es einfacher ist ein Gegenbeispiel zu nennen sehe ich ein, aber ich muss doch auch zeigen, dass f, g und h wohldefiniert sind, also zu jedem [mm] x \in X[/mm] existiert genau ein [mm]y \in Y[/mm], sodass [mm]f(x)=y[/mm]. Bei den Abbildungen sieht man das sofort, aber man soll das ja trotzdem "beweisen".. Ich hoffe du verstehst was ich meine
VG
Maggie
|
|
|
|
|
Hallo nochmal,
> Vielen dank für die schnelle Antwort:)
> Dass es einfacher ist ein Gegenbeispiel zu nennen sehe ich
> ein, aber ich muss doch auch zeigen, dass f, g und h
> wohldefiniert sind, also zu jedem [mm]x \in X[/mm] existiert genau
> ein [mm]y \in Y[/mm], sodass [mm]f(x)=y[/mm]. Bei den Abbildungen sieht man
> das sofort, aber man soll das ja trotzdem "beweisen".. Ich
> hoffe du verstehst was ich meine
Denke schon
Schreibe doch am einfachsten die einzelnen Bilder hin, die Mengen sind ja doch sehr überschaubar ...
Für f:
[mm] $1\mapsto 1\in [/mm] Y$
[mm] $2\mapsto 1\in [/mm] Y$
[mm] $3\mapsto 2\in [/mm] Y$ usw.
>
>
> VG
>
> Maggie
Grüße
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:01 Sa 17.10.2015 | Autor: | maggie123 |
Daran habe ich tatsächlich gar nicht gedacht. Die Beweise an der Tafel sehen immer so allgemein aus, dass ich das echt unnötig verkompliziert habe. Vielen vielen Dank!
VG
maggie
|
|
|
|