www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Würfeln - Wahrscheinlichkeit
Würfeln - Wahrscheinlichkeit < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfeln - Wahrscheinlichkeit: Lösung / Erklärung
Status: (Frage) beantwortet Status 
Datum: 13:24 Mi 19.11.2008
Autor: UNR8D

Aufgabe
Ein Würfel wird viermal geworfen. Berechne die Wahrscheinlichkeit folgender Ereignisse und erläutere kurz deinen Ansatz :

D: Es erscheint genau zweimal die Eins und die anderen Zahlen sind verschieden.

Hallo,

ich bin mir gerade nicht sicher wie ich diese Aufgabe lösen muss.
Erstmal gehe ich davon aus, dass mit "verschieden" "nicht Eins" gemeint ist, aber darum gehts mir eigentlich nicht.

Ich habe mir für |D| überlegt, dass ich eine Kombination aus Würfeln brauche, die die 1 zeigen (4*3) und für die beiden übrigen dann aus 5 Würfelseiten wählen kann (5*5).

Für |"omega"| gehe ich einfach davon aus, dass die Reihenfolge eine Rolle spielt also [mm] 6^4. [/mm]

Ist der Ansatz [mm] \bruch{4*3*5*5}{6^4} [/mm] korrekt oder müsste es heissen [mm] \bruch{(4*3):2*5*5}{6^4} [/mm]

Eigentlich tendiere ich irgendwie eher zu der 2. Lösung, aber da ich bei Omega die Reihenfolge beachte, müsste ich das dann eigentlich nicht auch bei der Auswahl der Würfe mit der 1 (4*3) tun ?

Es ist zwar eigentlich das gleiche ob ich beim 1. Wurf und beim 4. die 1 hab oder anders rum aber ich gehe doch wenn ichs so rechne auch davon aus dass es für beispielsweise 4 von 4 Würfen die die 1 zeigen 4! Möglichkeiten gibt, oder nicht ?

Klärt mich bitte auf ;)

        
Bezug
Würfeln - Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mi 19.11.2008
Autor: otto.euler

Wie groß ist die Wahrscheinlichkeit, dass der erste Wurf 1, der zweite Wurf 1, der dritte Wurf [mm] \not=1 [/mm] und der vierte Wurf [mm] \not=1 [/mm] ist?

Wieviele Kombinationen von genau zweimal 1, genau zweimal [mm] \not=1 [/mm] bei vier Würfen gibt es?

Wenn du beide Ergebnisse kombinierst, erhältst du die Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]