Wurzelkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:12 So 14.12.2008 | Autor: | Nyx |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Beweisen Sie die Konvergenz der unendlichen Reihe $\summe_{i=1}^{\infty} n*(7/10 + 1/n)^{n}$ .
Zeigen Sie hierfür die Konvergenz der Folge $(\wurzel[n]{n})_{n\in\IN} mit \limes_{n\rightarrow\infty}\wurzel[n]{n}=1$. |
Hallo Leute ich bräuchte einmal eure Hilfe bei einer Aufgabe....
als Hinweis haben wir zu der Aufgabe noch bekommen:
Beweisen Sie mit Hilfe des Binomischen Lehrsatzes die Ungleichung
$(1+ \bruch{2}{\wurzel{n}}) \ge \wurzel[n]{n} ,\forall n \in \IN $.
Folgern Sie nun die Konvergenz der Folge, indem Sie zu jedem $\varepsilon > 0$ ein $N \in \IN$ finden mit $|\wurzel[n]{n}-1|<\varepsilon$ für alle $n \ge \IN$.
Ich hab schon problem bei dem Beweis mit Hilfe des Binomischen Lehrsatzes...ich weiß nicht wie ich den richtig anwende auf die Ungleichung.
Den zweiten Teil der Aufgabe ein N zu finden hab ich so gelöst:
$|\wurzel[n]{n}-1|\ge(1+\wurzel{n})-1 = \bruch{2}{\wurzel{n}}$
Sei $N= \bruch{4}{\varepsilon^{2}}}$
Daraus folgt $\bruch{2}{\wurzel{n}}<\bruch{2}{\wurzel{\bruch{4}{\varepsilon^{2}}}}=\bruch{2}{\bruch{2}{\varepsilon}}=\varepsilon$
Ich hoffe das reicht so aus für den Teil.
Hätte ich jetzt beide Teile bearbeitet wäre damit automatisch gezeigt, dass
$(\wurzel[n]{n})_{n\in\IN} mit \limes_{n\rightarrow\infty}\wurzel[n]{n}=1$ konvergent ist?
Danke schonmal im Vorraus für die Hilfe
mfg Nyx
|
|
|
|
Hallo Nyx,
erstmal zum binomischen Lehrsatz.
Am bessten fängt man an mit [mm] (1+\bruch{2}{\wurzel{n}})^n=\summe_{k=0}^{n}\vektor{n \\ k}1^{n-k}\bruch{2}{\wurzel{n}}^k
[/mm]
und das ist [mm] \ge [/mm] n
Zieht man nun auf beiden Seiten die n-te Wurzel steht das gesuchte schond da!
[mm] \limes_{n\rightarrow\infty}\wurzel[n]{n}=1 [/mm] zeigt man am einfachsten, indem man zeigt das die Folge [mm] b_{k}=\wurzel[n]{n}-1 [/mm] eine Nullfolge ist.
[mm] b_{n}=\wurzel[n]{n}-1\gdw\wurzel[n]{n}=b_{n}+1\gdw n=(1+b_{n})^n>\bruch{n(n-1)}{2}b_{n}^2 [/mm] (das ist nur der 3. Summand des binomischen Satzes)
[mm] \Rightarrow b_{n}^2<\bruch{4n}{n^2}=\bruch{4}{n} [/mm] (umstellen der obigen Ungleichung, und weglassen der "-1")
[mm] \Rightarrow b_{n}<\bruch{2}{\wurzel{n}} \to [/mm] 0 [mm] (n\to\infty)
[/mm]
Und nun lässt sich die obige Reihe problemlos über das Wurzelkriterium zeigen.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:04 Mo 15.12.2008 | Autor: | Nyx |
> Hallo Nyx,
>
> erstmal zum binomischen Lehrsatz.
>
> Am bessten fängt man an mit
> [mm](1+\bruch{2}{\wurzel{n}})^n=\summe_{k=0}^{n}\vektor{n \\ k}1^{n-k}\bruch{2}{\wurzel{n}}^k[/mm]
>
> und das ist [mm]\ge[/mm] n
>
> Zieht man nun auf beiden Seiten die n-te Wurzel steht das
> gesuchte schond da!
>
> [mm]\limes_{n\rightarrow\infty}\wurzel[n]{n}=1[/mm] zeigt man am
> einfachsten, indem man zeigt das die Folge
> [mm]b_{k}=\wurzel[n]{n}-1[/mm] eine Nullfolge ist.
>
> [mm]b_{n}=\wurzel[n]{n}-1\gdw\wurzel[n]{n}=b_{n}+1\gdw n=(1+b_{n})^n>\bruch{n(n-1)}{2}b_{n}^2[/mm]
> (das ist nur der 3. Summand des binomischen Satzes)
>
bis hierher kann ich problemlos folgen aber jetzt verstehe ich nicht wie du auf die folgende ungleichung kommst...
[mm]\Rightarrow b_{n}^2<\bruch{4n}{n^2}=\bruch{4}{n}[/mm]
> [mm]\Rightarrow b_{n}^2<\bruch{4n}{n^2}=\bruch{4}{n}[/mm] (umstellen
> der obigen Ungleichung, und weglassen der "-1")
>
> [mm]\Rightarrow b_{n}<\bruch{2}{\wurzel{n}} \to[/mm] 0 [mm](n\to\infty)[/mm]
>
> Und nun lässt sich die obige Reihe problemlos über das
> Wurzelkriterium zeigen.
danke und mfg Nyx
|
|
|
|
|
kein Problem,
> > [mm]b_{n}=\wurzel[n]{n}-1\gdw\wurzel[n]{n}=b_{n}+1\gdw n=(1+b_{n})^n>\bruch{n(n-1)}{2}b_{n}^2[/mm]
> > (das ist nur der 3. Summand des binomischen Satzes)
aus der letzten Ungleichung [mm] n=(1+b_{n})^n>\bruch{n(n-1)}{2}b_{n}^2 [/mm] folgt ja [mm] n>\bruch{n(n-1)}{2}b_{n}^2 [/mm] und das ist > [mm] \bruch{n^2}{4}b_{n}^2 [/mm] (lässt sich durch Beispiele leicht nachvollziehen)
> [mm]\Rightarrow b_{n}^2<\bruch{4n}{n^2}=\bruch{4}{n}[/mm]
lg Kai
|
|
|
|