www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Zahlenfolge Aufgabe, sehts euch mal an!!
Zahlenfolge Aufgabe, sehts euch mal an!! < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenfolge Aufgabe, sehts euch mal an!!: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 15:37 Do 29.07.2004
Autor: zwieback86

Hallo ich sitze jetzt schon eine Weile an einer Aufgabe der Matheolympiade aus diesem Jahr. Ihr findet die Aufgabe unter:

http://www.mathematik-olympiaden.de/Aufgaben/43/3/43133b.pdf

Ich habe zwar eine Lösung, jedoch weiss ich nicht genau wie ich es beweisen soll, bzw ob mein Beweis ausreichend ist. Danke

Wäre nett wenn ihr euch das mal anschauen würdet.

mfg.

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Zahlenfolge Aufgabe, sehts euch mal an!!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Do 29.07.2004
Autor: zwieback86

Oh ich habe vergessen, dass es die letzte Aufgabe ist. Viel Spass

Bezug
                
Bezug
Zahlenfolge Aufgabe, sehts euch mal an!!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Do 29.07.2004
Autor: Hanno

Hi Zwieback.
Poste doch mal deinen Beweis oder deine lösung. Wenn wir sie nicht kennen, können wir sie weder beurteilen noch beweisen!

Gruß,
Hanno

Bezug
        
Bezug
Zahlenfolge Aufgabe, sehts euch mal an!!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Do 29.07.2004
Autor: Christian

Die Folge ist ja wie folgt (Wortspiel!!!) definiert:
[mm]x_1=1[/mm]
[mm]x_{k+1}=\bruch{1} {1+x_k}[/mm]
Die Folgenglieder lassen sich jeweils als Bruch zweier aufeinanderfolgender Fibonacci-Zahlen schreiben.
Die Folge konvergiert damit bekanntermaßen gegen den goldenen Schnitt
[mm]\bruch{\wurzel{5}-1} {2}[/mm].

Schätzung: [mm]x_{2001}[/mm] dürfte schon ziemlich dicht dran sein, da die Folge sehr schnell konvergiert.
Damit wäre der Ausdruck [mm]x_{2001}^2+x_{2001}-1[/mm] schon sehr dicht an 0 dran, wie sich leicht ausrechnen läßt.



Bezug
                
Bezug
Zahlenfolge Aufgabe, sehts euch mal an!!: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Do 29.07.2004
Autor: Hanno

Hi.
Eine Begründung ohne diese Konvergenzkriterien wäre angebracht denke ich, da man ja alles was man sagt auch beweisen soll bei den Matheolympies. Natürlich kann man ankommen und die Formel zum Auflösen von homogenen, linearen Rekursionen runterrattern und den Beweis erbringen, doch denke ich, dass das nicht der Sinn der Sache ist.
Dennoch ist es inhaltlich natürlich richtig, was du gesagt hast.

Gruß,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]