Zeitdiskretes Übertragungssys. < Regelungstechnik < Ingenieurwiss. < Vorhilfe
|
Aufgabe | Ein zeitdiskretes Übertragungssystem antwortet auf eine Eingangsfolge uk mit einer Ausgangsfolge vk. Für k<0 sind alle Folgenwerte Null.
http://img5.fotos-hochladen.net/uploads/1438729532095ics9lvrwmp.jpg
Geben Sie die rekursive Gleichung zur Berechnung von vk an. |
Hallo,
ich könnte Hilfe gebrauchen
Wie geht man bei so einer Aufgabe vor?
Ist das richtig das man erst die z-Übertraungsfunktion macht und dann die Vk ?
Komm aber schon nicht auf die Z Funktion.
Vielen Dank für die Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:58 Mi 05.08.2015 | Autor: | Infinit |
Hallo Marina12345,
Du brauchst hier keine Übertragungsfunktion generieren, es geht doch nur darum, die Ausgangswerte rekursiv für die verschiedenen k-Werte zu beschreiben. Hierbei hat man immer einen Startwert und das ist hier
[mm] v(0) = 0 [/mm]
Dann kann man mal weitermachen mit
[mm] v(1) = v(0) + 1 [/mm]
Bis [mm] v(3) [/mm] geht es dann weiter mit
[mm] v(k) = v(k-1) + 0.5 [/mm]
Danach bleibt die Sache konstant, also
[mm] v(k) = v(k-1) [/mm]
Das wäre es.
Viele Grüße,
Infinit
|
|
|
|
|
Aufgabe | Aufgabe b)
geben Sie den Wirkungsplan des Systems an |
Hallo und vielen Dank für deine Antwort.
Nur ist in der Lösung einmal die G(z) und Vk angegeben.
Brauch ich G(z) für die Aufgabe b?
Die Lösung soll sein G(z) = [mm] (z^2+0.5z+0.5)/ (z^3-1) [/mm]
und für vk= vk-3 +uk-1+0.5uk-2+0.5uk-3
Lg Marina
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Fr 07.08.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|