www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zentrum
Zentrum < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 So 25.04.2010
Autor: Salamence

Aufgabe
Sei G eine Gruppe
[mm] Z(G):=\{g\in G|gh=hg\forall h\in G\} [/mm]
Zeige: Z(G) ist ein Normalteiler von G und G ist abelsch, sofern G/Z(G) zyklisch ist.

Dass das nen Normalteiler ist, ist ja klar. Doch wie zeige ich den zweiten Teil? G abelsch bedeutet ja, dass Z(G)=G, damit hat G/Z(G) nur ein Element. Wie zeige ich also, dass G/Z(G) einelementig ist, sofern es zyklisch ist?
Kann ich irgendwie verwenden, dass es isomorph zu der Menge der inneren Automorphismen ist?
Oder irgendwie so:
Sei aZ(G) ein Erzeuger von G/Z(G), aber sei [mm] b\notin [/mm] aZ, folgt daraus irgendein Widerspruch?

        
Bezug
Zentrum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 So 25.04.2010
Autor: SEcki


>  Sei aZ(G) ein Erzeuger von G/Z(G), aber sei [mm]b\notin[/mm] aZ,

Genau - nehme mal einen Erzeuger a der Faktorgruppe. Wie sehen denn nun die Restklassenelemente aus? Nimm nun zwei beliebige Elemente g,h, schaue dir die Restklassen an, die davon erzeugt werden, und rechne ein bisschen.

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]