Zinsrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:31 So 12.12.2004 | Autor: | DrOetker |
Hallo!
Ich habe ein Ko=2500,-, Kn=54000,- und ein n=10.
Kann mir jemand anhand dieser Zahlen den Unterschied zwischen i, i-nominel, i-relativ, i-effektiv und i-konform erläutern???
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:18 So 12.12.2004 | Autor: | Josef |
> Hallo!
> Ich habe ein Ko=2500,-, Kn=54000,- und ein n=10.
> Kann mir jemand anhand dieser Zahlen den Unterschied
> zwischen i, i-nominel, i-relativ, i-effektiv und i-konform
> erläutern???
Hallo DrOetker,
Ich habe ein Ko=2500,-, Kn=54000,- und ein n=10.
Hier ist der Zinsatz gesucht.
2500*i^10 = 54000
i = [mm]\wurzel[n]{\bruch{54000}{2500}}-1[/mm]
i = der Zinssatz für 1 Euro angelegtes Kapital. Es gilt die Beziehung:
i = [mm]\bruch{p}{100}[/mm]
Beispiel:
Bei einem vereinbarten p=6 % Zinsen erhält der Sparer nach Ablauf eines Jahres für je 100 Euro angelegtes Kapital 6 Euro Zinsen.
i = [mm]\bruch{6}{100}[/mm] = 0,06
i-nominell und i-relative:
Bei der Betrachtung unterjährlicher Verzinsungsvorgänge sind verschiedene Zinssätze zu unterscheiden. Grundlage der Betrachtung ist hier immer der Zinssatz
i = [mm]\bruch{p}{100}[/mm]
der üblicherweise als der nominelle Jahreszinssatz bezeichnet wird. Aus diesem wird der Zinssatz
[mm] i^{*} [/mm] = [mm]\bruch{i}{m}[/mm]
abgeleitet. Diesen Zinssatz für die unterjährliche Zinsperiode bezeichnet man als den relativen Zinssatz. Er wird oft explizit vorgegeben, z.B.
als 3 % Halbjahreszins oder 2 % Zinsen pro Vierteljahr.
i-effektiv:
Es ergibt sich bei 3 % Halbjahreszins nach einem Jahr ein höheres Endkapital als bei 6 % Jahreszins, obwohl nominell 2*3 % auch 6 % sind. Je größer die Zahl der Zinsperioden pro Jahr wird, desto größer wird auch das Endkapital nach einem Jahr. Es liegt daher nahe zu fragen, welchen Jahreszins man bekommen müßte, damit das Endkapital nach einer bestimmten Anzahl von Jahren genauso hoch ist wie bei unterjährlicher Verzinsung mit vorgegebenem relativem Zinssatz.
Diesen Jahreszinssatz, der zu gleichem Endkapital führt wie der unterjährliche Verzinsungsvorgang, bezeichnet man als den effektiven Jahreszinssatz.
i-konform:
Oft kommt es bei unterjährlichen Verzinsungsvorgängen vor, dass trotz mehrfacher Zinszahlung pro Jahr ein bestimmter vorgegebener nomineller Jahreszinssatz nicht überschritten werden soll. Mit anderen Worten soll bei diesen unterjährlichen Verzinsungen der nominelle Jahreszinssatz nicht vom effektiven Jahrszinssatz abweichen. Unter dieser Bedingung kann für die unterjährliche Zinsperiode nicht der relative Zinssatz vergütet werden, sondern ein anderer Satz, den man als den konformen unterjährlichen Zinssatz und mit den Symbol k bezeichnet.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:41 Mo 20.12.2004 | Autor: | DrOetker |
Hallo!
Vielen Dank für dein Hilfe! Habe mich die Tage nicht gemeldet, weil ich Fananzmathe erst einmal zurückgestellt habe. Jetzt werde ich die Sache aber mal angehen (müssen)!
i, i-nom., und i-konf. sind so weit klar. Leider habe ich den Rest noch nicht ganz verstanden.
Was leite ich bei dem relativen Zinssatz vom i-nom. ab? Wenn ich z.B. eine unterjährige Verzinsung mit m=4 zu i-rel=2% habe, dann ist das Ergebnis nach einem Jahr doch >= i-nom zu 6%. Das ist dann doch eigentlich der i-eff. oder???
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:45 Mo 20.12.2004 | Autor: | Josef |
Hallo DrOetker,
gegeben sei der nominelle Jahreszinssatz [mm] i_{nom} [/mm] = 6 % p.a. Die Zinsverrechnung erfolgt vierteljährlich zum relativen Quartalszinssatz [mm] i_Q [/mm] = [mm] i_{rel} [/mm] = [mm]\bruch{i_{nom}}{4}[/mm] = [mm]\bruch{6}{4}[/mm] = 1,5 % p.Q.
Bei vierteljährlichem Zinszuschlag zu 1,5 % p.Q. ergibt sich der (zur Äquivalenz der Endwerte führende) effektive Jahreszins aus der Gleichung
[mm] 1+i_{eff} [/mm] = [mm] 1,015^4 [/mm] = 1,0614 d.h. [mm] i_{eff} [/mm] = 6,14 % p.a.
Somit ist der Quartalszins 1,5 % p.Q. konform zum effektiven Jahreszins 6,14 % p.a. ( und relativ zum nominellen Jahreszins 6,00 % p.a.).
Das besonder Kennzeichen einer unterjährlichen Verzinsung mit dem relativen Periodenzinssatz ist also, dass dadurch ein effektiver Jahreszinssatz erreicht wird, der größer ist als der nominelle Jahreszinsatz, der dem relativen Periodenzinssatz zugrunde liegt. In dem Beispiel war der nominelle Jahreszinssatz 6 %, aus diesem wurde der relative Periodenzinssatz von 1,5 % berechnet, dessen Anwendung zu einem effektiven Jahreszinssatz von rund 6,14 % führt.
|
|
|
|