www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Zufallsgrößen - Aufgabe
Zufallsgrößen - Aufgabe < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsgrößen - Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 17.09.2005
Autor: mathefreak_18

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute!
Bin neu hier, weil ich unbedingt rauskriegen will, wie diese Aufgabe geht:

Es sollen vier Teile eines Geräts nacheinander auf Funktionstüchtigkeit überprüft werden. Jedes Teil kann unabhängig von den anderen Teilen mit der Wahrscheinlichkeit 10% ausfallen. X kennzeichne die Anzahl der überprüften Teile bis zum eventuellen ersten defekten Teil. bestimmen Sie

a) die Wahrscheinlichkeitsverteilung von X
b) die Verteilungsfunktion von X

        
Bezug
Zufallsgrößen - Aufgabe: geometrische Verteilung
Status: (Antwort) fertig Status 
Datum: 12:52 Sa 17.09.2005
Autor: Stefan

Hallo!

Die Wahrscheinlichkeit, dass direkt das erste überprüfte Teil defekt ist, ist offenbar:

[mm] $P(X=1)=\frac{1}{10}$. [/mm]

Die Wahrscheinlichkeit, dass das zweite überprüfte Teil das erste defekte Teil ist, ist gleich der Wahrscheinlichkeit, dass das erste überprüfte Teil nicht defekt ist und dass das zweite überprüfte Teil defekt ist. Wegen der Unabhängigkeit kann man die Produktregel anwenden und erhält:

$P(X=2) = [mm] \frac{9}{10} \cdot \frac{1}{10}$. [/mm]

Die Wahrscheinlichkeit, dass das dritte überprüfte Teil das erste defekte Teil ist, ist gleich der Wahrscheinlichkeit, dass das erste und das zweite überprüfte Teil nicht defekt sind und dass das dritte überprüfte Teil defekt ist. Wegen der Unabhängigkeit kann man die Produktregel anwenden und erhält:

$P(X=3) = [mm] \frac{9}{10} \cdot \frac{9}{10} \cdot \frac{1}{10} [/mm] = [mm] \left( \frac{9}{10} \right)^2 \cdot \frac{1}{10}$. [/mm]

Erkennst du das Prinzip? Ich nehme es mal an... ;-)

Du kannst es dir zum Beispiel []hier (ganz unten) mal anschauen.

Hast du zur Verteilungsfunktion jetzt selber eine Idee? Schau erst einmal nach, wie ihr sie definiert habt und versuche zum Beispiel [mm] $F_X(3) [/mm] = P(X [mm] \le [/mm] 3)$ mal auszurechnen.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]