Zweite partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie durch Berechnung der zweiten partiellen Ableitungen
daß die Funktion
[mm] f:\IR^2 \rightarrow \IR, f(x,y)=\begin{cases}
0, & \text{wenn }x=y=0\\
xy\frac {x^2-y^2} {x^2+y^2}, & \text{sonst }
\end{cases} [/mm]
in (0,0) zweimal partiell differenzierbar ist. |
Hallo,
ich hab mir den Nachmittag mit dieser Teilaufgabe um die Ohren gehauen, aber allzu weit komm ich nicht. Ist das erste mal, dass ich mich mit partiellen Ableitungen beschäftige.
Das hab ich bisher:
Ich hab erstmal die ersten partiellen Ableitungen mit Hilfe der Quotienten und Produktregel gebildet:
[mm] \frac {\delta} {\delta x} = \frac {2x(x^2+y^2) - 2x(x^2-y^2)} {(x^2+y^2)^2}xy + \frac {x^2-y^2} {x^2+y^2} = \frac {4x^2y^3} {(x^2+y^2)^2}+ \frac {x^2-y^2} {x^2 + y^2} = \frac {4x^2y^3+x^4-y^4} {(x^2+y^2)^2}[/mm]
[mm] \frac {\delta} {\delta y} = \frac {-2y(x^2+y^2) - 2y(x^2-y^2)} {(x^2+y^2)^2}xy + \frac {x^2-y^2} {x^2+y^2} = \frac {-4x^3y^2} {(x^2+y^2)^2} + \frac {x^2-y^2} {x^2 + y^2} = \frac {-4x^3y^2+x^4-y^4} {(x^2+y^2)^2} [/mm]
Für die zweite Ableitung habe ich jetzt jeweils nach der anderen Variabel abgleitet. Ich habe die Quotienten und die Kettenregel verwendet.
[mm] \frac {\delta} {\delta x \delta y} = \frac {(12y^2-4y^3)(x^2+y^2)^2-2(x^2+y^2)2y(4x^2y^3+x^4-y^4)} {(x^2+y^2)^4} [/mm]
[mm] \frac {\delta} {\delta y \delta x} = \frac {(-12x^2+4x^3)(x^2+y^2)^2-2(x^2+y^2)2x(-4x^3y^2+x^4-y^4)} {(x^2+y^2)^4} [/mm]
So, jetzt soll ich sagen ob sie in (0,0) für den zweiten Grad partiell differenzierbar ist. Ich weiß nicht wirklich was das heißt, oder wie das gehen soll. die Funktion ist ja für x=y=0 gleich 0. In der Klammer steht doch (x,y), oder? Also ist die Funktion doch 0 und dann ist die Ableitung gleich 0 und die zweite auch. Würd ich mal mit meinen stark begrenzten Mathefähigkeiten hier sagen.
Kann auch gut sein, dass man hier folgende Definition braucht:
[mm] D_i f(x) = \lim_{h \to \infty} \frac {f_i(x_i+h)-f_i(x_i)} {h} [/mm]
Aber für den Punkt (0/0) und den zugehörigen Funktionswert 0 weiß ich nicht wie mir die weiterhelfen soll.
Wär nett, wenn mir wer auf die Sprünge helfen könnte.
Gruß Almightybald
|
|
|
|
stimmt, danke, dann lauten die Ableitungen:
[mm] \frac {\delta} {\delta x} = \frac {4x^2y^3} {(x^2+y^2)^2} + \frac {yx^4-y^5} {(x^2+y^2)^2} = \frac {4x^2y^3+yx^4-y^5} {(x^2+y^2)^2} [/mm]
[mm] \frac {\delta} {\delta y} = \frac {-4y^2x^3} {(x^2+y^2)^2} + \frac {x^5-xy^4} {(x^2+y^2)^2} = \frac {-4y^2x^3-xy^4+x^5} {(x^2+y^2)^2} [/mm]
und die Ableitungen zweiten Grades:
[mm] \frac {\delta} {\delta x \delta y} = \frac {(12x^2y^2+x^4-5y^4)(x^2+y^2)^2 - 2(x^2+y^2)2y(4x^2y^3+yx^4-y^5)} {(x^2+y^2)^4} = \frac {(12x^2y^2+x^4-5y^4)(x^2+y^2) - 4y^2(4x^2y^2+x^4-y^4)} {(x^2+y^2)^3} [/mm]
[mm] \frac {\delta} {\delta y \delta x} = \frac {(-12y^2x^2+5x^4-y^4)(x^2+y^2)^2-2(x^2+y^2)2x(-4y^2x^3+x^5-xy^4)} {(x^2+y^2)^4} = \frac {(-12y^2x^2+5x^4-y^4)(x^2+y^2)-4x^2(-4y^2x^2+x^4-y^4)} {(x^2+y^2)^3} [/mm]
Und wie überprüft man das jetzt im Punkt (0,0)?
Gruß Karsten
|
|
|
|
|
Hallo almightybald,
> stimmt, danke, dann lauten die Ableitungen:
>
> [mm]\frac {\delta} {\delta x} = \frac {4x^2y^3} {(x^2+y^2)^2} + \frac {yx^4-y^5} {(x^2+y^2)^2} = \frac {4x^2y^3+yx^4-y^5} {(x^2+y^2)^2}[/mm]
>
> [mm]\frac {\delta} {\delta y} = \frac {-4y^2x^3} {(x^2+y^2)^2} + \frac {x^5-xy^4} {(x^2+y^2)^2} = \frac {-4y^2x^3-xy^4+x^5} {(x^2+y^2)^2}[/mm]
>
> und die Ableitungen zweiten Grades:
>
> [mm]\frac {\delta} {\delta x \delta y} = \frac {(12x^2y^2+x^4-5y^4)(x^2+y^2)^2 - 2(x^2+y^2)2y(4x^2y^3+yx^4-y^5)} {(x^2+y^2)^4} = \frac {(12x^2y^2+x^4-5y^4)(x^2+y^2) - 4y^2(4x^2y^2+x^4-y^4)} {(x^2+y^2)^3}[/mm]
>
> [mm]\frac {\delta} {\delta y \delta x} = \frac {(-12y^2x^2+5x^4-y^4)(x^2+y^2)^2-2(x^2+y^2)2x(-4y^2x^3+x^5-xy^4)} {(x^2+y^2)^4} = \frac {(-12y^2x^2+5x^4-y^4)(x^2+y^2)-4x^2(-4y^2x^2+x^4-y^4)} {(x^2+y^2)^3}[/mm]
Ok. Die partiellen Ableitungen stimmen.
>
> Und wie überprüft man das jetzt im Punkt (0,0)?
Nun, setze für [mm]\frac {\delta} {\delta y \delta x}[/mm] y=0 und x=h.
Bilde dann den Grenzwert für h gegen 0.
Entsprechend für [mm]\frac {\delta} {\delta x \delta y}[/mm].
Natürlich kannst Du auch jede andere Folge nehmen,
es muß sich nur um Nullfolgen handeln.
>
> Gruß Karsten
Gruß
MathePower
|
|
|
|