www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - abstand punkt von der ebene
abstand punkt von der ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstand punkt von der ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 22.10.2006
Autor: rzamania

hey ich habe wieder maql ne frage...

hab im internet nur allgemeines dazu gefunden...

ok das thema is sehr aus meien gedächtnis verschwunden...

und zwar muss ich den abstand des punktes von folgender ebene rausfinden...

P(-1/2/1)

E: (2/0/1)+n(0/1/2)+(2/1/3)

wie geh ich da nochmal vor??

gruss andreas

        
Bezug
abstand punkt von der ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 22.10.2006
Autor: M.Rex


> hey ich habe wieder maql ne frage...
>  
> hab im internet nur allgemeines dazu gefunden...
>  
> ok das thema is sehr aus meien gedächtnis verschwunden...
>  
> und zwar muss ich den abstand des punktes von folgender
> ebene rausfinden...
>  
> P(-1/2/1)
>  
> E: (2/0/1)+n(0/1/2)+(2/1/3)
>  
> wie geh ich da nochmal vor??
>  
> gruss andreas

Hallo Andreas und [willkommenvh]

Es gibt mehrere Möglichkeiten, dieses Problem zu lösen.

Der einfachste Weg ist m.E. nach der Weg über die Normalenform der Ebebe.
Diese wäre in deinem Fall:

E: [mm] \vec{x}*\vektor{1\\4\\-1}=1 [/mm]

Den Normanlenvektor habe ich per Kreuzprodukt aus den Richtungsvektoren errechnet.
Jetzt kannst du die Gerade g berechnen, die Senkrecht auf E steht und durch p geht.

Also g: [mm] \vektor{-1\\2\\1}+\lambda\vektor{1\\4\\-1} [/mm]

Wenn du jetzt den Durchstosspunkt F der Geraden auf der Ebene berechnest, bist du fast fertig.

Dazu mal g in E einsetzen
[mm] \vektor{-1+\lambda\\2+4\lambda\\1-\lambda}*\vektor{1\\4\\-1}=1 [/mm]
[mm] \gdw (-1+\lambda)*1+(2+4\lambda)*4+(1-\lambda)*(-1)=1 [/mm]
[mm] \gdw 6+6\lambda=1 [/mm]
[mm] \gdw \lambda=-\bruch{5}{6} [/mm]

Also ist [mm] \vec{f}=\vektor{-1\\2\\1}-\\bruch{5}{6}\vektor{1\\4\\-1} [/mm]

Jetzt musst du die Länge des Vektors [mm] \overrightarrow{PF} [/mm] berechnen. Diese ist dein gesuchter Abstand.

Marius

Bezug
                
Bezug
abstand punkt von der ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 So 22.10.2006
Autor: rzamania

ist das kreuzprodukt nicht (-1/-4/1)???????

Bezug
                        
Bezug
abstand punkt von der ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 So 22.10.2006
Autor: Slartibartfast

ich habe für [mm] \vec{n} [/mm] = [mm] \vektor{1 \\ \red{+}4 \\ -2}, [/mm] falls der 2. Spannvektor [mm] \vektor{2 \\ 1 \\ 3} [/mm] ist (da fehlt nämlich der Parameter).

@M.Rex: also ich finde das ganz schön umständlich, die Hesseform würde sich doch viel eher anbieten...


Gruß
Slartibartfast

edit: sorry, kleiner Dreher ;)

Bezug
                                
Bezug
abstand punkt von der ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 So 22.10.2006
Autor: rzamania

meinst du  nicht (1/4/-2)?

Bezug
                                        
Bezug
abstand punkt von der ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Mo 23.10.2006
Autor: ardik

Hallo rzamania,

> meinst du  nicht (1/4/-2)?

Sicherlich.
Hab zwar nicht alles nachgerechnet, aber die Probe mittels Skalarprodukt bestätigt, dass (1/-4/-2) nicht senkrecht zum zweiten Spannvektor steht.

Und zu Deiner vorherigen Frage bzgl. Kreuzprodukt: Ich schätze, Marius hat die Vektoren in umgekehrter Reihenfolge multipliziert, dann kehrt sich ja das Vorzeichen des Kreuzproduktes um:
[mm] $\vec [/mm] a [mm] \times \vec [/mm] b = - [mm] (\vec [/mm] b [mm] \times \vec [/mm] a )$

Schöne Grüße,
ardik


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]