www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Äquivalenz von Aussagen
Äquivalenz von Aussagen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Aussagen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 05:08 Do 06.11.2008
Autor: Klemme

Aufgabe
a) Sei X eine nicht-leere Menge und [mm] \sim [/mm] eine Äquivalenzrelation auf X. Sei p:X [mm] \to X_{/ \sim}, [/mm] x [mm] \mapsto [x]_{\sim}. [/mm] Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
- Die Relation [mm] \sim [/mm] hat ein Repräsentantensystem.
- Es gibt eine Abbildung [mm] g:X_{/ \sim} \to [/mm] X mit [mm] p\circg=id_{X/\sim}. [/mm]

b) Beweisen Sie, dass die folgenden beiden Aussagen äquivalent sind:
- Jede Partition von jeder Menge hat ein Repräsentantensystem.
- Für alle Mengen X, Y und alle surjektiven Abbildungen f:X [mm] \to [/mm] Y gilt: Es gibt eine Abbildung g:Y [mm] \to [/mm] X mit f [mm] \circ [/mm] g = idy.

Bemerkung. Diese Aufgabe ist nicht ganz exakt gestellt, weil nicht gesagt ist, welche Konstruktionen bez. Mengen (und Abbildungen) Sie voraussetzen dürfen. Die Idee ist, nur "elementare Aussagen über Mengen (und Abbildungen) vorausszusetzen und insbesondere das Auswahlaxiom nicht vorausszusetzen.

a) Das Repräsentantensystem ist, wenn ich das richtig verstanden habe, das Bild der Menge der Äquivalenzklassen?

Jedem Element der Äquivalennzklassen wird demnach ein Element des Repräsentantensystems zugeordnet.

Die Abbildung, die gemeint ist, ist bijektiv.
Es gilt also:
[mm] \forall [/mm] x, [mm] x^{|} \in [/mm] X: f(x) = [mm] f(x^{|}) \to [/mm] x = [mm] x^{|} [/mm]
und
[mm] \forall [/mm] y [mm] \in [/mm] Y: [mm] \exists [/mm] x [mm] \in [/mm] X: f(x) = y

Beide Aussagen sind somit äquivalent.

b) Eine Partition von einer Menge ist eine Teilmenge. Man kann sagen: A [mm] \in [/mm] X, d.h. [mm] \exists [/mm] x [mm] \in [/mm] X, so dass x [mm] \not\in [/mm] A


Die Abbildung, die gemeint ist, ist auch bijektiv.
Es gilt also:
[mm] \forall [/mm] x, [mm] x^{|} \in [/mm] X: f(x) = [mm] f(x^{|}) \to [/mm] x = [mm] x^{|} [/mm]
und
[mm] \forall [/mm] y [mm] \in [/mm] Y: [mm] \exists [/mm] x [mm] \in [/mm] X: f(x) = y

Leider weiß ich hier echt nicht, welche Definitionen ich brauche und wie ich mit denen die Äquivalenz der Aussagen beweisen soll. Ich hoffe, jemand knn mir da einen guten Tip geben.

LG Klemme

        
Bezug
Äquivalenz von Aussagen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:20 Sa 08.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]