Äquivalenzrelationen/- klasse < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:04 So 01.07.2007 | Autor: | LeMaSto |
Aufgabe | Sei M := [mm] \IN \backslash \{1,2\}. [/mm] Für Teilmengen A,B [mm] \in [/mm] Pot [mm] (\IN) [/mm] werde eine Relation S definiert durch
ApB [mm] :\gdw [/mm] A [mm] \backslash [/mm] B [mm] \subseteq [/mm] M [mm] \wedge [/mm] B [mm] \backslash [/mm] A [mm] \subseteq [/mm] M
a) Zeigen Sie: p ist eine Äquivalenzrelation in Pot [mm] (\IN) [/mm] .
b) Bestimmen Sie die Anzahl der Äquivalenzklassen von p. |
hey...
kann mir jemand bei der aufgabe helfen!? (bei a) würde wohl eine begründung reichen.) ich bin wie immer um jede hilfe sehr dankbar!
lg lemasto
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:02 So 01.07.2007 | Autor: | dormant |
Hi!
Du musst bei a) nur nachrechnen:
i) für alle A aus der Potenzmenge von [mm] \IN [/mm] gilt ApA, d.h. A \ A ist Teilmenge M;
ii) für alle A und B mit ApB gilt auch BpA, d.h. aus A \ B und B \ A in M, gilt auch B \ A und A \ B in M (offensichtlich);
iii) für alle A, B und C folgt aus ApB und BpC, dass ApC. Vorgegeben also ist A \ B, B \ A, B \ C, C \ B alle in M und zu zeigen ist, dass A \ C und C \ A in M.
Gruß,
dormant
|
|
|
|
|
> Sei M := [mm]\IN \backslash \{1,2\}.[/mm] Für Teilmengen A,B [mm]\in[/mm] Pot
> [mm](\IN)[/mm] werde eine Relation S definiert durch
> ApB [mm]:\gdw[/mm] A [mm]\backslash[/mm] B [mm]\subseteq[/mm] M [mm]\wedge[/mm] B [mm]\backslash[/mm] A
> [mm]\subseteq[/mm] M
> a) Zeigen Sie: p ist eine Äquivalenzrelation in Pot [mm](\IN)[/mm]
> .
> b) Bestimmen Sie die Anzahl der Äquivalenzklassen von p.
Man hätte diese Relation auch mit Hilfe der "symmetrischen Differenz" [mm]A\Delta B := (A\backslash B) \cup (B\backslash A)[/mm] so schreiben können:
[mm]A p B :\Leftrightarrow A\Delta B \subseteq M[/mm]
bzw.
[mm]A p B :\Leftrightarrow (A\Delta B)\cap \{1;2\} = \emptyset[/mm]
Die Anzahl der Äquivalenzklassen ergibt sich daher aus der Anzahl verschiedener Möglichkeiten dafür, dass [mm]A\Delta B[/mm] zu [mm]\{1;2\}[/mm] disjunkt ist:
1. Fall: [mm]1\notin A,B[/mm] und [mm]2\notin A,B[/mm].
2. Fall: [mm]1\notin A,B[/mm] und [mm]2\in A,B[/mm].
3. Fall: [mm]1\in A,B[/mm] und [mm]2\notin A,B[/mm].
4. Fall: [mm]1\in A,B[/mm] und [mm]2\in A,B[/mm].
|
|
|
|