www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - anzahl der möglichkeiten
anzahl der möglichkeiten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

anzahl der möglichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 30.10.2006
Autor: roadrunnerms

hallo,
sorry konnte das diskussionsthema net anders schreiben.
also mein problem is, dass ich net weiß wie ich bei der formalen und gedanklichen lösung folgender aufgabe vorgehn soll.
aufgabe:
eine n-seitige pyramide mit [mm] n\ge3, [/mm] n seitenflächen und eine grundfläche.
nun soll ein tier auf diesen kanten entlang krabbeln. es beginnt und endet immer im mittelpunkt der selben grundkante. pro weg wird ein punkt höchsten einmal durchlaufen.
nun soll ich beweisen, dass es (n):= 1+1/2 n(n-1) verschiedene wege gibt.
ein weg gilt als gleich, wenn er dieselben punkte enthält.

jetzt mal ne frage, was wird als punkt angesehn, der mittelpunkt einer seitenkante, oder ein eckpunkt.
aber egal mit welcher möglichkeit ichs mir überlegen, mit n=3 und als punkt die eckkante komm ich nur auf 3 möglichkeitn.
und mit den mittelpukten komm ich auf mindesten 5.
aber laut zu beweisender gleichung müsst ich auf 4 kommen.

wie muss man sich des dann überlegen und wie des an aufschreiben (formal)

        
Bezug
anzahl der möglichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Mo 30.10.2006
Autor: roadrunnerms

hat keiner eine idee???

Bezug
        
Bezug
anzahl der möglichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Di 31.10.2006
Autor: Leopold_Gast

Nehmen wir den Fall [mm]n=4[/mm]. Wenn man aus der Vogelperspektive auf die Pyramide schaut, ergibt sich das folgende Bild.

[Dateianhang nicht öffentlich]

Die Pyramidenspitze wird mit 0 markiert, die andern Ecken der Reihe nach mit 1,2,3,4. Aus jedem erlaubten Weg kann man durch Umkehren der Laufrichtung einen weiteren erlaubten Weg bekommen. Da solche Wege aber nach Aufgabenstellung identifiziert werden sollen, genügt es, Wege zu betrachten, die mit der Ecke 1 starten.

Da gibt es zunächst den Weg "unten herum":

1 – 2 – 3 – 4

Alle andern Wege laufen irgendwann einmal über 0. Man kann von jeder der Ecken 1,2,3 aus auf die 0 gehen. Sobald man dort ist, kann man zu jeder Ecke, die noch nicht an der Reihe war, gehen und den Lauf "unten herum" vollenden. Das gibt die folgenden Wege:

[Dateianhang nicht öffentlich]

Zusammen sind das [mm]1 + 2 + 3 = \frac{1}{2} \cdot ( 4 - 1 ) \cdot 4 = 6[/mm] Wege. Und mit dem Weg "unten herum" ist es noch einer mehr:

[mm]1 + \left( 1 + 2 + 3 \right) = 1 + \frac{1}{2} \cdot ( 4 - 1 ) \cdot 4 = 7[/mm] mögliche Wege.

Vielleicht spielst du selbst jetzt noch den Fall [mm]n=5[/mm] durch, indem du nach der obigen Systematik alle Wege angibst. Dann sollte die Verallgemeinerung auf ein beliebiges [mm]n[/mm] nicht mehr schwer fallen.

Da das Ganze auf den Binomialkoeffizienten [mm]{n \choose 2} = \frac{1}{2} n (n-1)[/mm] hinausläuft, kannst du natürlich auch nach einem Beweis suchen, der auf die Auswahl von 2 Elementen aus insgesamt [mm]n[/mm] ohne Berücksichtigung der Reihenfolge abhebt. (Streiche bei den Wegen in der Tabelle alle Ecken außer der 0 mit ihren beiden Nachbarn, und dann laß auch noch die 0 weg. Vielleicht wird es dir dann klar.)

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]