baryzentrische Koordinaten < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 23:04 Do 18.09.2008 | Autor: | Riley |
Aufgabe | Sei T = [mm] \Delta(z_1,z_2,z_3) \subset \IR^2, z_i [/mm] = [mm] (x_i,y_i), [/mm] i= 1,2,3, ein nicht degeneriertes Dreieck der Ebene, d.h. [mm] z_1,z_2,z_3 [/mm] liegen nicht alle auf einer Geraden. Zeigen Sie, dass die Baryzentrischen Koordinaten bzgl T, [mm] \phi_i: \IR^2 [/mm] -> [mm] \IR, [/mm] i=1,2,3, definiert durch
[mm] \forall [/mm] (x,y) [mm] \in \IR^2 [/mm] : [mm] \phi_i(x,y) [/mm] = [mm] \vmat{ 1 & ... & 1& ...& 1 \\ x_1 & ... & x & ...& x_3 \\ y_1 & ... & y & ... & y_3 } [/mm] / [mm] \vmat{ 1 & ... & 1& ...& 1 \\ x_1 & ... & x_i & ...& x_3 \\ y_1 & ... & y_i & ... & y_3 }
[/mm]
die folgenden Eigenschaften erfüllen:
(1) [mm] \phi_i(x_j,y_j) [/mm] = [mm] \delta_{ij}, [/mm] j=1,2,3
(2) [mm] \sum_{i=1}^3 \phi_i \equiv [/mm] 1
(3) [mm] \forall [/mm] (x,y) [mm] \in \IR^2 [/mm] : [mm] \sum_{i=1}^3(x_i,y_i) \cdot \phi_i(x,y) [/mm] = (x,y)
(4) [mm] \forall [/mm] p [mm] \in \poverline{\Pi}_1: \sum_{i=1}^3 p(x_i,y_i) \phi_i \equiv [/mm] p |
Hallo,
(1) sollte klar sein, da für i=j Zähler und Nenner gleich sind, also hat man 1 und für i [mm] \not= [/mm] j sind zwei Zeilen linear abhängig, also bekommt man Null.
Mal eine ganz dumme Frage, was bedeuten die Pünktchen in der Determinante? Weil i und j laufen doch sowieso nur von 1 bis 3 ?
(2) ist eigentlich auch noch klar, da eine Ebene, die an 3 Punkten gleich 1 ist, identisch 1 ist. Die drei Punkte sind hier ja jeweils immer eine Ecke des Dreiecks, z.B. [mm] \phi_1(x_1,y_1) [/mm] + [mm] \phi_2(x_1,y_1) [/mm] + [mm] \phi_3(x_1,y_1) [/mm] = 1 + 0 + 0 = 1 und mit den beiden andren Punkten entsprechend.
(3) Hier bin ich mir nicht ganz sicher. Vielleicht kann man das so sehen:
[mm] \sum_{i=1}^3 \vektor{x_i \\ y_i} \cdot \phi_i(x,y) [/mm] = [mm] \vektor{x \\ y}.
[/mm]
Also angeblich ist die 1.Komponente eine Ebene, die zweite auch und zwei Ebenen stimmen überein wenn sie in 3 Punkten übereinstimmen.
Muss ich das dann so auseinanderziehen:
[mm] x_1 \phi_1(x,y) [/mm] + [mm] x_2 \phi_2(x,y) [/mm] + [mm] x_3 \phi_3(x,y) [/mm] = x und für y entsprechend und dann zeigen, dass sie in 3 Punkten übereinstimmen???
(4) Hier hab ich noch gar keine Idee.
Freu mich über alle Tipps und Tricks!
Viele Grüße,
Riley
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Di 23.09.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|