www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - basen von unterraum und R^3/U
basen von unterraum und R^3/U < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

basen von unterraum und R^3/U: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:59 Mi 21.06.2006
Autor: toggit

Aufgabe
gegeben ist der folgende UnterraumU von [mm] \IR^3. [/mm]
U={ [mm] \vektor{x_1 \\ x_2\\ x_3} \in \IR^3 [/mm] | [mm] x_1=x_2=x_3 [/mm] }
bestimme basen von U und [mm] \IR^3/U [/mm]

hallo
vielleicht ist das ne blöde frage aber wie sieht basis von U aus?
ich versuche und versuche und komme aus dem vektor [mm] \vektor{1 \\ 1\\ 1} [/mm] nicht weiter, aber das ist doch untervektorraum von [mm] \IR^3 [/mm] also sollen noch mind. zwei vektoren sein oder? ( naja unter umständen [mm] \vektor{1 \\ 1\\ 1} [/mm] und [mm] \vektor{0 \\ 0\\ 0} [/mm] -trotztem fehlt noch ein)
kann mir da jemand weiter helfen??

und noch eine sache, für [mm] \IR^3/U [/mm] reicht doch standartbasis ( [mm] \vektor{1 \\ 0\\ 0} [/mm] , [mm] \vektor{0 \\ 1\\ 0} [/mm] , [mm] \vektor{0 \\ 0\\ 1} [/mm] ) oder?

mfg

        
Bezug
basen von unterraum und R^3/U: Korrektur
Status: (Antwort) fertig Status 
Datum: 07:46 Mi 21.06.2006
Autor: Karthagoras


> gegeben ist der folgende UnterraumU von [mm]\IR^3[/mm].
>  [mm] U=\color{blue}\left\{\color{black}\vektor{x_1 \\ x_2\\ x_3} \in \IR^3 | x_1=x_2=x_3\color{blue}\right\}[/mm]
>  bestimme basen von U und [mm]\IR^3/U[/mm]
>  hallo
>  vielleicht ist das ne blöde frage aber wie sieht basis von
> U aus?
>  ich versuche und versuche und komme aus dem vektor
> [mm]\vektor{1 \\ 1\\ 1}[/mm] …

[ok]

> …nicht weiter, aber das ist doch
> untervektorraum von [mm]\IR^3[/mm] also sollen noch mind. zwei
> vektoren sein oder? ( naja unter umständen [mm]\vektor{1 \\ 1\\ 1}[/mm]
> und [mm]\vektor{0 \\ 0\\ 0}[/mm] -trotztem fehlt noch ein)

Nein, fehlt keiner. Im Gegenteil der Nullvektor [mm]\vektor{0 \\ 0\\ 0}[/mm] ist niemals ein Basisvektor.
Nee, dein Untervektorraum ist eindimensional.

> und noch eine sache, für [mm]\IR^3/U[/mm] reicht doch standardbasis
> ( [mm]\vektor{1 \\ 0\\ 0}[/mm] , [mm]\vektor{0 \\ 1\\ 0}[/mm] , [mm]\vektor{0 \\ 0\\ 1}[/mm]
> ) oder?

[mm] $\dim{V/U}= \dim{V}-\dim{U}$ [/mm]  
bzw.
[mm] $\dim{\IR^3/U}= \dim{\IR^3}-\dim{U}$ [/mm]

d.h. du musst für den zweiten Teil nach etwas suchen, das zweidimensional ist.

Gruß Karthagoras

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]