bedingte Dichte, Erwartungsw. < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:49 Fr 27.11.2009 | Autor: | Peon |
Aufgabe | Seien [mm] X_1 [/mm] und [mm] X_2 [/mm] unabhängige, identisch N(0, 1)-verteilte Zufallsvariablen und
X := [mm] \pmat{ X_1 & X_2 }, [/mm] B := [mm] \pmat{ 1 & 0 \\ 1 & -1 }, [/mm] Y:= [mm] \pmat{ Y_1 & Y_2 } [/mm] := BX.
a) Bestimmen Sie die Dichte von Y = [mm] \pmat{ Y_1 & Y_2 } [/mm] und die Randdichte von [mm] Y_2 [/mm] . Hinweis: Beachten Sie die Normierungseigenschaft von Normalverteilungsdichten.
b) Zeigen Sie, dass die bedingte Dichte von [mm] Y_1 [/mm] unter [mm] Y_2 [/mm] = [mm] y_2 [/mm] wieder eine Normalverteilungsdichte ist und bestimmen Sie die bedingten Erwartungswerte von [mm] Y_1 [/mm] sowie von [mm] Y^2_1 [/mm] unter [mm] Y_2 [/mm] = [mm] y_2 [/mm] . |
Hi, also ich kann ja mal meine Ergebnisse posten und würde mich über Korrekturen freuen:
a)
i) [mm] f(x_1,x_2)=f(x_1)*f(x_2)=\bruch{1}{\wurzel{2\pi}}e^{\bruch{-x^2_1}{2}}*\bruch{1}{\wurzel{2\pi}}e^{\bruch{-x^2_2}{2}}=\bruch{1}{2\pi}e^{\bruch{1}{2}x^2_1+x^2_2}
[/mm]
x=B^-1y
B^-1=B (ich schreibe die Rechnungen jetzt nicht alle hin...)
Es gilt [mm] |detJ|=|detB^{-1}|=1
[/mm]
Es ergibt sich:
[mm] x^2_1+x^2_2 [/mm] = [mm] x^Tx=y^T(B^1)^TB^-1y
[/mm]
=> g(y) = [mm] \bruch{1}{2\pi}e^{-y^2_1+y_1y_2-\bruch{1}{2}y^2_2}
[/mm]
ii) Als Randdichte haben wir [mm] \bruch{1}{2\pi} [/mm] raus, aber da sind wir nicht sicher ob es richtig ist.
DANKE
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:44 Fr 27.11.2009 | Autor: | luis52 |
Moin,
schau mal ]hier (6.1) und d) Seite 85.
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:58 Sa 28.11.2009 | Autor: | Peon |
Hi,
danke schonmal für den Literaturhinweis, ich versuche auch gerade das zu erarbeiten. Hast du vielleicht ein einfaches, konkretes Beispiel, wie man die bedingte Dichte und den bedingten EW berechnet, dann wird mir das vielleicht klarer und ich kann es auf meine Aufgabe übertragen.
Danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:03 Sa 28.11.2009 | Autor: | luis52 |
Moin,
gib doch hier im MR mal unter Suchen ein: bedingte Dichte. Da findest du einiges...
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:51 Sa 28.11.2009 | Autor: | Peon |
Hab mal ein bisschen im Forum rumgesucht.
Ich glaube ich kapier es einfach nicht, ich finde Stochastik ist echt sau schwer.
Naja ich habe mal was zur b) versucht, stoße aber auf ein Problem:
Mit [mm] f_{y_1|y_2=y_2}=e^{-y^2_1+y_1y_2-\bruch{1}{2}y^2_2} [/mm] ( das wäre ja das ergebis aus der a) ii), allerdings bin ich mir da nicht sicher...)
komme ich auf folgenden EW:
[mm] E[h(Y_1,Y_2)|Y_2=y_2]=\integral_{-\infty}^{\infty}{y_1f_{y_1|y_2=y_2}(y_1) dy_1}=\integral_{-\infty}^{\infty}{y_1e^{-y^2_1+y_1y_2-\bruch{1}{2}y^2_2}dy_1}
[/mm]
Hier habe ich das Problem, dass ich mit den Grenzen [mm] -\infty [/mm] und [mm] \infty [/mm] nicht zurecht komme. Da muss man doch noch bestimmt was beachten, so dass sich die Grenzen noch ändern?!
Danke und Gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:42 Sa 28.11.2009 | Autor: | luis52 |
Moin,
irgendwie sieht mir das nicht koscher aus (Ich vermisse
beispielsweise den Faktor [mm] $1/\sqrt{2\pi}$ [/mm] in dem Integral).
Schau doch mal hier.
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:33 So 29.11.2009 | Autor: | Peon |
Oh ja danke, das hat mir geholfen glaube ich:
Als Randdichte erhalten nun:
[mm] f(x)=\integral_{-\infty}^{\infty}{f(y_1,y_2) dy_1}=\integral_{-\infty}^{\infty}{\bruch{1}{2\pi}*e^{-y_1^2+y_1*y_2-\bruch{1}{2}y_2^2} dy_1}=\bruch{1}{2\pi}*\integral_{-\infty}^{\infty}{e^{-\bruch{1}{2}y_1^2}*e^{\bruch{1}{2}(y_2^2-y_1^2)} dy_1}=\bruch{1}{2\pi}*e^{-\bruch{1}{2}y_1^2}*\integral_{-\infty}^{\infty}{e^{\bruch{1}{2}(y_2^2-y_1^2)} dy_1}=\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2}*\integral_{-\infty}^{\infty}{\bruch{1}{\wurzel{2\pi}}*e^{\bruch{1}{2}(y_2^2-y_1^2)} dy_1}=\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2} [/mm] (da das Integral 1 wird aufgrund der Normierungseigenschaft?!)
Damit ergibt sich folgende bedingte Dichte:
[mm] f_{Y_1|Y_2=y_2}(y_1)=\bruch{f_{Y_1,Y_2}(y_1,y_2)}{f_{Y_2}(y_2)}=\bruch{\bruch{1}{2\pi}*e^{-y_1^2+y_1*y_2-\bruch{1}{2}y_2^2}}{\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2}}=...=\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2+y_1*y_2-\bruch{1}{2}y_2^2}
[/mm]
Im Skript haben wir stehen, dass das die Dichte ist für [mm] f_Y_2(y_2)>0, [/mm] sonst ist die Dichte 0. Gilt das immer oder wie sieht das in diesem Fall aus? Kannst du mir das vllt erklären?
Kann man dann wie folgt den bedingten EW berechnen:
[mm] EW=\integral_{-\infty}^{\infty}{y_2*\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2+y_1*y_2-\bruch{1}{2}y_2^2} dy_2} [/mm] ??
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:52 So 29.11.2009 | Autor: | luis52 |
> Oh ja danke, das hat mir geholfen glaube ich:
> Als Randdichte erhalten nun:
>
> [mm]f(x)=\integral_{-\infty}^{\infty}{f(y_1,y_2) dy_1}=\integral_{-\infty}^{\infty}{\bruch{1}{2\pi}*e^{-y_1^2+y_1*y_2-\bruch{1}{2}y_2^2} dy_1}=\bruch{1}{2\pi}*\integral_{-\infty}^{\infty}{e^{-\bruch{1}{2}y_1^2}*e^{\bruch{1}{2}(y_2^2-y_1^2)} dy_1}=\bruch{1}{2\pi}*e^{-\bruch{1}{2}y_1^2}*\integral_{-\infty}^{\infty}{e^{\bruch{1}{2}(y_2^2-y_1^2)} dy_1}=\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2}*\integral_{-\infty}^{\infty}{\bruch{1}{\wurzel{2\pi}}*e^{\bruch{1}{2}(y_2^2-y_1^2)} dy_1}=\bruch{1}{\wurzel{2\pi}}*e^{-\bruch{1}{2}y_1^2}[/mm]
Das *kann* nicht stimmen.
1) Es muss heissen [mm] $f(y_2)$!
[/mm]
2) Hinten muss etwas in Abhaengigkeit von [mm] $y_2$ [/mm] stehen. (Du integrierst jas [mm] $y_1$ [/mm] heraus.)
vg Luis
|
|
|
|