berechnung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:37 Mi 09.04.2008 | Autor: | jura |
Aufgabe | Bei einer linearen Abbildung f: [mm] \IR^2 \to \IR^3 [/mm] gelte: f [mm] \vektor{1\\0\\0}= \vektor{2\\-1\\0}, [/mm] f [mm] \vektor{0\\1\\0}= \vektor{3\\1\\-1}, [/mm] f [mm] \vektor{0\\0\\1}= \vektor{0\\1\\0}.
[/mm]
Berechnen Sie f [mm] \vektor{1\\1\\0}, [/mm] f [mm] \vektor{0\\1\\1}, [/mm] f [mm] \vektor{1\\1\\1} [/mm] und f [mm] \vektor{-2\\-2\\-2}. [/mm] |
zur lösung hab ich mir die gegebenen abbildungen ganz einfach komponentenweise zusammengebastelt, zb:
f [mm] \vektor{1\\1\\0}= [/mm] f [mm] \vektor{1\\0\\0}+ [/mm] f [mm] \vektor{0\\1\\0}= \vektor{2\\-1\\0} [/mm] + [mm] \vektor{3\\1\\-1}= \vektor{5\\0\\-1}
[/mm]
geht das so?
und dann bräuchte ich noch ein paar erklärung darüber hinaus: wie hängt das beispielsweise mit der darstellungsmatrix zusammen? oder den basisvektoren der beiden VR? was kann ich aus dieer aufgabe noch alles ableiten oder berechnen?
vielen danke, gruß, jura.
|
|
|
|
> Bei einer linearen Abbildung f: [mm]\IR^2 \to \IR^3[/mm] gelte: f
> [mm]\vektor{1\\0\\0}= \vektor{2\\-1\\0},[/mm] f [mm]\vektor{0\\1\\0}= \vektor{3\\1\\-1},[/mm]
> f [mm]\vektor{0\\0\\1}= \vektor{0\\1\\0}.[/mm]
> Berechnen Sie f
> [mm]\vektor{1\\1\\0},[/mm] f [mm]\vektor{0\\1\\1},[/mm] f [mm]\vektor{1\\1\\1}[/mm]
> und f [mm]\vektor{-2\\-2\\-2}.[/mm]
> zur lösung hab ich mir die gegebenen abbildungen ganz
> einfach komponentenweise zusammengebastelt, zb:
> f [mm]\vektor{1\\1\\0}=[/mm] f [mm]\vektor{1\\0\\0}+[/mm] f
> [mm]\vektor{0\\1\\0}= \vektor{2\\-1\\0}[/mm] + [mm]\vektor{3\\1\\-1}= \vektor{5\\0\\-1}[/mm]
>
> geht das so?
Hallo,
ja, Du nutzt die Linearität der Abbildung.
>
> und dann bräuchte ich noch ein paar erklärung darüber
> hinaus: wie hängt das beispielsweise mit der
> darstellungsmatrix zusammen? oder den basisvektoren der
> beiden VR? was kann ich aus dieer aufgabe noch alles
> ableiten oder berechnen?
Aus
f[mm]\vektor{1\\0\\0}= \vektor{2\\-1\\0},[/mm] f [mm]\vektor{0\\1\\0}= \vektor{3\\1\\-1},[/mm]
> f [mm]\vektor{0\\0\\1}= \vektor{0\\1\\0}.[/mm]
kannst Du Dir die Darstellungsmatrix von f bzgl. der kanonischen Basis E bauen, die des öfteren mit [mm] _EA(f)_E [/mm] bezeichnet wird,
aus
f $ [mm] \vektor{1\\1\\0}, [/mm] $ f $ [mm] \vektor{0\\1\\1}, [/mm] $ f $ [mm] \vektor{1\\1\\1} [/mm] $
die Darstellungsmatrix [mm] _EA(f)_B [/mm] bzgl
der Basen [mm] B=(\vektor{1\\1\\0}, \vektor{0\\1\\1},\vektor{1\\1\\1}) [/mm] und E.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:20 Mi 09.04.2008 | Autor: | jura |
>
> Aus
> f[mm]\vektor{1\\0\\0}= \vektor{2\\-1\\0},[/mm] f [mm]\vektor{0\\1\\0}= \vektor{3\\1\\-1},[/mm]
> > f [mm]\vektor{0\\0\\1}= \vektor{0\\1\\0}.[/mm]
> kannst Du Dir die
> Darstellungsmatrix von f bzgl. der kanonischen Basis E
> bauen, die des öfteren mit [mm]_EA(f)_E[/mm] bezeichnet wird,
das wäre also einfach nur [mm] \pmat{ 2 & 3 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 0}
[/mm]
>
> aus
> f [mm]\vektor{1\\1\\0},[/mm] f [mm]\vektor{0\\1\\1},[/mm] f [mm]\vektor{1\\1\\1}[/mm]
> die Darstellungsmatrix [mm]_EA(f)_B[/mm] bzgl
> der Basen [mm]B=(\vektor{1\\1\\0}, \vektor{0\\1\\1},\vektor{1\\1\\1})[/mm]
> und E.
und hier [mm] \pmat{ 5 & 3 & 5 \\ 0 & 2 & 1 \\ -1 & -1 & -1}
[/mm]
und wozu kann ich diese matrizen nun ganz konkret nutzen, ich überblicke das noch nicht so ganz- es handelt sich um die gleiche abbildung, jedoch verschiedene darstellungsmatrizen.....?
>
> Gruß v. Angela
gruß v. jule
|
|
|
|
|
Hallo,
beide matrizen stellen ein und dieselbe Abbildung dar, jedoch bzgl verschiedener Basen.
[mm] _EA_E [/mm] fürtterst Du mit Spaltenvektoren in Koodinaten bzgl. E, und die Matrix liefert Dir das Bild unter der Abbildung f in Spaltenvektoren bzgl. E.
[mm] _EA_B [/mm] fürtterst Du mit Spaltenvektoren in Koodinaten bzgl. B, und die Matrix liefert Dir das Bild unter der Abbildung f in Spaltenvektoren bzgl. E.
Natürlich kannst Du auch die Matrix [mm] _BA_B [/mm] aufstellen.
Passende Stichwörter zum Nachlesen in der Literatur wären Basistransformation, Transformationsmatrizen, Darstellungsmatrizen.
Gruß v. Angela
|
|
|
|