borelmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:54 So 21.12.2008 | Autor: | mini111 |
Aufgabe | Begründen Sie, warum für [mm] $\alpha, \beta, \gamma [/mm] >0$ die Menge [mm] $E_{\alpha, \beta, \gamma}:=\{(x,y,z) \in \IR^3\ :\ (x/\alpha)^2 + (y/\beta)^2 + (z/\gamma)^2 \le 1 \}$
[/mm]
eine Borelmenge ist und berechnen Sie [mm] $\lambda^3 (E_{\alpha, \beta, \gamma})$. [/mm] Dabei dürfen Sie ohne Beweis benutzen, dass [mm] $\lambda^3(E_{1,1,1})=4*\pi/3$ [/mm] gilt. |
Hallo,
Ich weiß nicht wie ich das hier machen könnte.also was eine Borelmenge ist,habe ich glaube ich so ungefähr verstanden aber hier kann ich das irgendwie nicht anwenden.würde mich über Hilfe freuen!
gruß
|
|
|
|
> Begründen sie,warum für [mm]\alpha, \beta, \gamma[/mm] >0 die Menge
> [mm]E_{\alpha, \beta, \gamma}:={(x,y,z) \in \IR^3 : (x/\alpha)^2 + (y/\beta)^2 + (z/\gamma)^2 \le 1 }[/mm]
>
> eine Borlemenge ist und berechnen sie [mm]\lambda^3 (E_{\alpha, \beta, \gamma})[/mm]
> .Dabei dürfen sie ohne Beweis benutzen,dass
> [mm]\lambda^3(E_{1,1,1})=4*Pi/3[/mm] gilt.
> Hallo,
>
> Ich weiß nicht wie ich das hier machen könnte.also was eine
> Borelmenge ist,habe ich glaube ich so ungefähr verstanden
> aber hier kann ich das irgendwie nicht anwenden.würde mich
> über Hilfe freuen!
Hallo,
ich denke, daß es nützlich wäre, würdest Du mal posten, wie Ihr "Borelmenge" definiert habt.
Dann kannst Du sicher auch besser erklären, wo Dein Problem liegt.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:05 So 21.12.2008 | Autor: | mini111 |
Hallo Angela,
Ja also wir haben das so definiert:
sei (X,d) ein metr. Raum und O die Menge aller offenen Teilmengen von X.Die kleinste sigma-Algebra in X,welche O enthält,bez. man als die sigma-algebra B(X) der Borelschen Teilmengen von X.
Irgendwo habe ich gelesen,dass abgeschlossene und offene Mengen Borelmengen sind.Gilt das immer?und wenn ja verstehe ich nicht ganz warum.
Gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:17 So 21.12.2008 | Autor: | Merle23 |
Hier steht nochmal was eine [mm]\sigma-Algebra[/mm] ist.
Wie du siehst ist zu jeder Menge auch ihr Komplement drin.
Wenn du dir jetzt die Menge [mm] \mathcal{O} [/mm] aller offenen Teilmengen nimmst und daraus eine [mm]\sigma-Algebra[/mm] bauen willst, musst du also schon mal jedes Komplement jeder offenen Menge mit reinnehmen.
Und per Definition sind die Komplemente offener Mengen die abgeschlossenen Mengen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:24 So 21.12.2008 | Autor: | Merle23 |
Wir haben ja schon festgestellt, dass in der [mm]Borelschen-\sigma-Algebra[/mm] des [mm] \IR^3 [/mm] alle offenen und abgeschlossenen Mengen drin sind.
Dir bleibt also zu zeigen, dass [mm] E_{\alpha,\beta,\gamma} [/mm] eine abgeschlossene Menge ist.
Es ist [mm] E_{1,1,1} [/mm] die abgeschlossene Einheitskugel und allgemein [mm] E_{\alpha,\beta,\gamma} [/mm] ein Ellipsoid.
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 10:31 Mo 22.12.2008 | Autor: | mini111 |
Hallo Merle23,
Danke für die Hilfe!Ich würd sagen,dass der Rand des Ellipsoids, wegen [mm] \le [/mm] 1 mit in der menge liegt und deshalb die Menge abgeschlossen ist und [mm] \Rightarrow [/mm] Borelmenge. aber wahrscheinlich reicht das wohl kaum als begründung oder?
Gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:07 Mo 22.12.2008 | Autor: | Marc |
Hallo,
> Begründen Sie, warum für [mm]\alpha, \beta, \gamma >0[/mm] die Menge
> [mm]E_{\alpha, \beta, \gamma}:=\{(x,y,z) \in \IR^3\ :\ (x/\alpha)^2 + (y/\beta)^2 + (z/\gamma)^2 \le 1 \}[/mm]
>
> eine Borelmenge ist und berechnen Sie [mm]\lambda^3 (E_{\alpha, \beta, \gamma})[/mm].
> Dabei dürfen Sie ohne Beweis benutzen, dass
> [mm]\lambda^3(E_{1,1,1})=4*\pi/3[/mm] gilt.
>
> Ich weiß nicht wie ich das hier machen könnte.also was eine
> Borelmenge ist,habe ich glaube ich so ungefähr verstanden
> aber hier kann ich das irgendwie nicht anwenden.würde mich
> über Hilfe freuen!
Es sollte so funktionieren:
Betrachte die Abbildung [mm] $\varphi:\ \IR^3\to\IR,\ (x,y,z)\mapsto (x/\alpha)^2 [/mm] + [mm] (y/\beta)^2 [/mm] + [mm] (z/\gamma)^2$.
[/mm]
Diese Abbildung ist stetig.
Außerdem gilt [mm] $\varphi^{-1}([0,1])=E_{\alpha, \beta, \gamma}$, [/mm] d.h, deine Menge [mm] $E_{\alpha, \beta, \gamma}$ [/mm] ist das Urbild eines abgeschlossenen Intervalls unter einer stetigen Abbildung. Was folgt daraus?
Du kannst auch so argumentieren:
Versehe [mm] $\IR^3$ [/mm] und [mm] $\IR$ [/mm] mit den [mm] $\sigma$-Algebren [/mm] der Borelschen Mengen, also [mm] $\mathcal{B}(\IR^3)$ [/mm] und [mm] $\mathcal{B}(\IR)$. [/mm] Da [mm] $\varphi$ [/mm] stetig ist, ist [mm] $\varphi$ [/mm] auch Borel-messbar. Wegen [mm] $[0,1]\in\mathcal{B}(\IR)$ [/mm] und der Messbarkeit von [mm] $\phi$ [/mm] gilt auch [mm] $E_{\alpha, \beta, \gamma}=\varphi^{-1}([0,1])\in \mathcal{B}(\IR^3)$.
[/mm]
Viele Grüße,
Marc
|
|
|
|