charakteristisches polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] A=\pmat{ a & b \\ c & d }\in K^{2*2} [/mm] und [mm] P_{A}=a_0 +a_1 X+a_2 X^2 \in [/mm] K[X] das zugehörige charakteristische Polynom.Berechnen sie
[mm] P_A(A):=a_0 id_{K^n}+a_1 [/mm] A+ [mm] a_2 A^2 [/mm] |
Hallo,
Ich habe keine Ahnung was ich mit dieser Aufgabe anfangen soll.Ich hoffe mir kann jemand helfen.Ich verstehe schon gar nicht warum das charakteristische Polynom hier diese [mm] P_{A}=a_0 +a_1 X+a_2 X^2 [/mm] \ Gestalt hat,das charakteristische Polynom hat doch diese [mm] Form:det(A-\lambda*E)=(a-\lambda)*(d-\lambda)-c*d [/mm] oder liege ich da falsch?
Viele Grüße
eva marie
|
|
|
|
Hallo eva-Marie!
Wahrscheinlich nur ein Tippfehler: $det(A - [mm] \lambda [/mm] E) = [mm] (a-\lambda)(d [/mm] - [mm] \lambda) [/mm] - bc$ Das ist doch nun ein Polynom zweiten Grades und genau diese Form soll es nach der Aufgabenstellung haben. Die Vorfaktoren erhälst du einfach durch Ausmultiplizieren. In der Aufgabenstellung wurde nur $X$ anstatt [mm] $\lambda$ [/mm] geschrieben. An unterschiedliche Bezeichnungen muss man sich gewöhnen
Der Rest ist einsetzen und rechnen. Das Ergebnis ist übrigends die Nullmatrix.
Gruß,
Stephan
|
|
|
|
|
Hallo Stephan,
Super danke,habe ich jetzt auch heraus,war ja einfacher als ich dachte:)
Gruß
eva marie
|
|
|
|