definition rationale Zahlen < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Hallo!
Kenne folgende Darstellungen der Defintion rationaler Zahlen
[mm] \IQ=\{\bruch{p}{q}|p,q \in \IZ, q\not=0\} [/mm] und [mm] \IQ=\{[\bruch{p}{q}]|p,q \in \IZ, q\not=0\}, [/mm]
warum sind bei der zweiten Defintion noch die Klammern um den Bruch?
danke
|
|
|
|
> Hallo!
>
> Kenne folgende Darstellungen der Defintion rationaler
> Zahlen
>
> [mm]\IQ=\{\bruch{p}{q}|p,q \in \IZ, q\not=0\}[/mm] und
> [mm]\IQ=\{[\bruch{p}{q}]|p,q \in \IZ, q\not=0\},[/mm]
>
> warum sind bei der zweiten Defintion noch die Klammern um
> den Bruch?
Hallo,
ich denke, daß das keinen tieferen Sinn hat. [mm] \bruch{p}{q}=(\bruch{p}{q}), [/mm] und die haben halt eckige Klammern genommen.
Gruß v. Angela
|
|
|
|
|
hmmm, bei der klammergeschichte ist das noch erweitert darunter, da steht dann, dass
[mm] \bruch{p}{q}=\bruch{r}{s} [/mm] und dass diese Gleichung für ps=qr erfüllt ist, man einen Bruch als verschieden darstellen kann, könnte es damit noch irgendwas zu tun haben?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:52 Mi 22.10.2008 | Autor: | Marcel |
Hallo,
> hmmm, bei der klammergeschichte ist das noch erweitert
> darunter, da steht dann, dass
>
> [mm]\bruch{p}{q}=\bruch{r}{s}[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
und dass diese Gleichung für
> ps=qr erfüllt ist, man einen Bruch als verschieden
> darstellen kann, könnte es damit noch irgendwas zu tun
> haben?
ja, das hat einen tieferen Sinn. Und zwar meint bei zweitem eigentlich $\left[\frac{p}{q}\right]=\left\{\frac{r}{s}; r,s \in \IZ \text{ und } s \not=0, \text{ so dass } r*q=p*s\right\}$
Also hier ist $\left[\frac{p}{q}\right]$ eine Äquivalenzklasse (ich weiß nicht, ob Dir das schon ein Begriff ist).
Z.B. ist bei zweitem $\left[\frac{6}{8}\right]=\left\{...,\frac{-9}{-12},\frac{-6}{-8}, \frac{-3}{-4}, \frac{3}{4},\frac{6}{8},\frac{9}{12},...\right\}$
Dann definiert man auf diesen Äquivalenzklassen gewisse Rechenregeln und überzeugt sich von deren Wohldefiniertheit, wobei man so etwas braucht, dass $\left[\frac{p}{q}\right]*\left[\frac{r}{s}\right]$ unabhängig vom Repräsentant der Äquivalenzklasse ist, d.h.:
Wenn man $\left[\frac{p}{q}\right]*\left[\frac{r}{s}\right]:=\left[\frac{p*r}{q*s}\right]$ definiert, so muss ja, damit diese Definition "sinnvoll" ist, z.B. auch, wenn $\frac{p'}{q'} \in \left[\frac{p}{q}\right]$ und $\frac{r'}{s'} \in \left[\frac{r}{s}\right]$ dann auch
$$\frac{p'*r'}{q'*s'} \in \left[\frac{p*r}{q*s}\right]$$
nachgeprüft werden.
Irgendwann geht man dann über, weil man "zufällig feststellt", dass die Rechnung (Addition, Multipilikation) mit den Äquivalenzklassen sich genauso durchführen lassen wie mit jedem beliebigen Repräsentanten einer Äquivalenzklasse (das meinte ich oben mit der "Wohldefiniertheit"), z.B. anstelle von $\left|\frac{p}{q}\right]$ dann nur noch $\frac{p}{q}$ zu schreiben.
Näheres findest Du z.B. hier.
(Die Notation ist da auch besser, weil, wenn man anstatt [mm] $\frac{p}{q}$ [/mm] nun $(p,q)$ schreibt, so gerät man nicht in die Gefahr, dass der Bruchstrich als Divisionszeichen interpretiert wird, wie man es in der Schule gelernt hat. Das rechtfertigt man eigentlich erst später!)
Das ganze hat etwas mit Äquivalenzrelationen zu tun. In der Linearen Algebra wird Dir mal ähnliches bei Begriffen wie "Fasern, Quotientenvektorräumen..." begegnen, in der Analysis bzw. Wahrscheinlichkeitstheorie sicherlich bei der Lebesgueschen Integrationstherie.
Gruß,
Marcel
|
|
|
|