dichtefunktion < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:38 So 03.01.2010 | Autor: | simplify |
Aufgabe | X und Y seien unabhängige [mm] \IR^{+} [/mm] -wertige Zufallsvariablen, die wir als Wartezeit interpretieren . Zeigen Sie, dass das induzierte Maß von X+Y eine Dichte hat und bestimmen Sie die Dichtefunktion in den folgenden beiden Fällen:
a) X=1 (konstant), und Y ist exponentialverteilt zum Parameter [mm] \lambda [/mm] > 0
b) X ist gleichverteilt in [0,1], und Y ist eponentialverteilt zum Parameter [mm] \lambda=1 [/mm] |
hallo,
ich muss zugeben,dass mir so gar kein ansatz einfallen will.
hoffe jetzt mal auf einen kleinen tipp...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 So 03.01.2010 | Autor: | Infinit |
Hallo simplify,
sind die beiden Zufallsvariablen unabhängig voneinander, so ergibt sich für eine Addition die Dichtefunktion [mm] f_z (z) [/mm] aus der Faltung der einzelnen Dichten. Das sollte Dir bekannt sein, denn dies herzuleiten, ist eine etwas aufwendige Sache.
Somit bekommt man
$$ [mm] f_z [/mm] (z) = [mm] \int_{- \infty}^{\infty} f_x [/mm] (z-y) [mm] f_y [/mm] (y) [mm] \, [/mm] dy $$
Natürlich musst Du nicht von - Unendlich bis + Unendlich integrieren, aufgrund Deiner Dichten ergeben sich rechenfreundlichere Grenzen.
Viel Erfolg beim Einsetzen,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:53 So 03.01.2010 | Autor: | tvod |
Bei b) kommt man vielleicht mit der Faltung weiter (noch nicht näher darüber nachgedacht), aber bei a) sehe ich das nicht - zumindest wüsste ich nicht, wie die zu faltende Dichtefunktion für X=1 aussehen sollte, wenn man ganz [mm] \IR [/mm] betrachtet.
Die Dichte müsste ja eigentlich "1 durch Länge des Intervalls sein", was bei ganz [mm] \IR [/mm] ein bisschen klein wird..
Vielleicht könnte man da über die gemeinsame Verteilungsfunktion gehen?
F(Y+X<y) = F(Y+1<y) = F (Y<y-1)
[mm] =\integral_{-\infty}^{y-1}{f(x) dx} [/mm] = [mm] \integral_{-\infty}^{0}{f(x) dx} [/mm] + [mm] \integral_{0}^{y-1}{f(x) dx} [/mm] = 0 + [mm] \integral_{0}^{y-1}{f(x) dx}
[/mm]
Wenn man jetzt vielleicht noch mit z=x+1 substituiert (was ich nicht (mehr) kann), dann müsste sich die gesuchte Dichte doch als Ableitung des Integrals ergeben?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:53 Mo 04.01.2010 | Autor: | Infinit |
Hallo tvod,
beim Aufgabenteil a, der nicht gerade sehr eindeutig ausgedrückt ist, dürfte wohl mit dem Hinweis auf die Konstanz, -wir wissen ja, es geht um Wartezeiten -, de facto eine Diracdichte verbunden sein. Die Zufallsvariable X nimmt mit Wahrscheinlichkeit 1 den Wert 1 an. Dieser "Peak" bei 1 lässt sich mit Hilfe der Diracfunktion schreiben und vereinfacht damit ungemein das Faltungsintegral.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:27 Mo 04.01.2010 | Autor: | Wurzel2 |
Hallo.
Ich sitze auch gerade an dieser Aufgabe.
Mir war auch nicht bewusst was bei a) zu X=1 die zugehörige Dichte ist. Allerdings kann ich mit dem Tipp der Diracfunktion nichts anfangen, da dies nicht in der Vorlesung vorkam.
Kann jemand noch etwas dazu sagen, oder gibt es noch einen anderen Lösungsweg um auf die Dichte von X zu kommen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:31 Mo 04.01.2010 | Autor: | Infinit |
Hallo Wurzel2,
ich kann es mir eigentlich nur über die Dichte einer diskreten Zufallsverteilung vorstellen, ansonsten wüsste ich nicht, wie man auf einen sinnvollen Zahlenwert kommen sollte. Falls ihr schon diskrete Verteilungen und deren Dichten behandelt habt, da kommen diese Diracstöße drin vor, mitunter werden sie auch als Delta-Funktionen bezeichnet.
Hier mal ein Beispiel: Falls man beim Münzwurf der Zahl die Zufallsvariable x = -0,5 und dem Wappen die Zufallsvariable x = 0,3 zuordnen würde (natürlich geht es auch anders), dann wäre die Dichte dieser Verteilung
$$ [mm] f_x [/mm] (x) = -0,5 [mm] \cdot \delta [/mm] (x + 0,5) + 0,5 [mm] \cdot \delta [/mm] (x-0,3) $$
Falls Dir so was bekannt vorkommt, dann bin ich ziemlich sicher, dass der Fall x=1 (Konstant) damit gemeint sein soll.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:01 Mo 04.01.2010 | Autor: | simplify |
hallo,
also zu b) habe ich jetzt:
[mm] f_{z}(z)=\integral_{?}^{?}{e^{-z+y} dy} [/mm] stimmt das soweit?
und bei den grenzen bin ich mir auch nicht sicher. 0 und [mm] +\infty [/mm] sind es wahrscheinlich nicht?!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:15 Mo 04.01.2010 | Autor: | Infinit |
Hallo simplify,
nett geraten, stimmt aber leider nicht. Wenn Du mal die Dichte in mein Faltungsintegral einsetzt, siehst Du, dass die Y-Dichte nur von y abhängt. Die Funktion ist nur für positive y definiert mit
[mm] f_y (y) = \lambda \exp^{- \lambda y} [/mm]. Das gleichverteilte x hat zwischen 0 und 1 einen konstanten Wert von 0,1. f(z-y) bedeutet eine Spiegelung an der y-Achse und dann wird das Ganze um z verschoben. Die untere Grenze ist demzufolge -1+z, die obere liegt bei z. Male Dir mal beide Dichten übereinander, dann siehst Du die Integralgrenzen. Diese sind 0 und z, solange z kleiner als 1 ist. Für größere Werte wandert das umgeklappte Rechteck voll unter die Exponentialkurve und die Grenzwerte laufen von z bis z+1. Zusammenfassend also
a) für positive z kleiner 1
$$ [mm] \int_0^z [/mm] 0,1 [mm] \cdot \lambda \exp^{- \lambda y } \, [/mm] dy $$
und b) für größere z
$$ [mm] \int_z^{z+1} [/mm] 0,1 [mm] \cdot \lambda \exp^{- \lambda y } \, [/mm] dy $$
Viel Spaß beim Rechnen,
Infinit
|
|
|
|