www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - differentialgleichung lösen
differentialgleichung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differentialgleichung lösen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 21:58 Do 18.01.2007
Autor: Gilbert

Aufgabe
Betrachten Sie die Differentialgleichung für einen schwach gedämpften [mm] (\gamma [/mm] < Wo )
harmonischen Oszillator mit äußerer Kraft, der mit seiner Resonanzfrequenz angetrieben wird:

d²x/dt² + 2 [mm] \gamma [/mm] dx/dt +Wo²x =Fsin(Wo t)



Geben Sie die allgemeine Lösung des Problems an!
Damit x(t) reell wird, muß für die beiden Integrationskonstanten der homogenen Lösung aus dem Exponentialansatz
C1 = C2 *
gelten. Bestimmen Sie die Lösungsfunktion für ein reelles
C = C1 = C2 und skizzieren Sie diese! Zeigen Sie, dass zwischen der entstehenden Schwingung
des Oszillators nach dem Einschwingen und der Antriebsschwingung ein Phasenunterschied von
-/pi/2 besteht, also die Schwingung der Anregung hinterhinkt. Mit welcher Amplitude schwingt
der Oszillator nach dem Einschwingen?

ich wäre echt dankbar für eine lösung, da ich bei dieser aufgabe nicht weiter komme und sie recht wichtig für mich ist. und auch nicht mehr viel zeit ist

eventuell stelle ich die aufgabe auch noch in einem anderen forum

Den ersten teil der aufgabe habe ich erledigt.

dar ansatz für den Homogenen Teil der Gleichung lautete:  y=A+e^-cx

ich erhalte für C1 und C2 zwei imaginäre werte.

( C1,2 = [mm] \gamma \pm [/mm] i [mm] \wurzel{ | \gamma ² - Wo²| } [/mm] )
auch das mit den C2* =C1 erhalte ich.

aber wie geht es weiter?

mit welchen C = C1 =c2 soll ich die lösungsfunktion aufstellen?

welchen ansatz soll ich dort wählen?

und wie bestimme ich den phasenunterschied?

ich wäre echt dankbar für eine lösung, da ich bei dieser aufgabe nicht weiter komme und sie recht wichtig für mich ist. und auch nicht mehr viel zeit ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
differentialgleichung lösen: ...ein reelles c=c1=c2...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Fr 19.01.2007
Autor: Peter_Pein

Hallöle,

wenn c1=c-i*wurzelvonetwas und c2=c+i*wurzelvonetwas ist und diese beiden Werte gleich sein sollen, was folgt dann für wurzelvonetwas und damit für etwas?

Nachdem du so dein c bestimmt hast, sollte es eigentlich relativ einfach weiter gehen.

Gruß,
Peter


Bezug
        
Bezug
differentialgleichung lösen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 24.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]