www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - e Funktion - nach Expo. auflös
e Funktion - nach Expo. auflös < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e Funktion - nach Expo. auflös: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Di 05.04.2011
Autor: Ina92

Aufgabe
Eine Nährlösung enthält zu Beginn der Beobachtung 5000 Colibakterien. Täglich vermehren sich diese um 25%.
Wann übersteigt die Bakterienanzahl den Wert 1000000?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Also ich bin bisher soweit gekommen:
[mm] 1000000=5000*e^{t*ln(1.25)} [/mm] dann habe ich :5000 gerechnet und habe nun [mm] 200=e^{0223*t} [/mm] dastehen.
Wie löse ich weiter auf, sodass ich am Ende t=.. dastehen habe. Mit dem Logarithmus? Wenn ja, wie? Und war mein erster Schritt überhaupt richtig?
Danke schonmal

        
Bezug
e Funktion - nach Expo. auflös: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 05.04.2011
Autor: ONeill

Hi!
> und habe nun [mm]200=e^{0223*t}[/mm] dastehen.
>  Wie löse ich weiter auf, sodass ich am Ende t=.. dastehen
> habe. Mit dem Logarithmus? Wenn ja, wie? Und war mein
> erster Schritt überhaupt richtig?

Ja zum umstellen würdest Du den ln benutzen.
[mm]200=e^{0223*t}[/mm]
ln(200)=0,223t

Gruß Christian [hut]

Bezug
                
Bezug
e Funktion - nach Expo. auflös: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Di 05.04.2011
Autor: Ina92

Aufgabe
Eine Nährlösung enthält zu Beginn der Beobachtung 5000 Colibakterien. Täglich vermehren sich diese um 25%.
Wann übersteigt die Bakterienanzahl den Wert 1000000?

Vielen Dank erstmal.
Wenn ich das dann weiter auflösen möchte, rechne ich dann *0.223, sodass t=ln(200)*0.223 dasteht? Denn da käme 1,181 raus, aber die Lösung lautet angeblich t=23,74.
Was habe ich nun wieder falsch gemacht? ):

Bezug
                        
Bezug
e Funktion - nach Expo. auflös: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Di 05.04.2011
Autor: MathePower

Hallo Ina92,


[willkommenmr]


> Eine Nährlösung enthält zu Beginn der Beobachtung 5000
> Colibakterien. Täglich vermehren sich diese um 25%.
>  Wann übersteigt die Bakterienanzahl den Wert 1000000?
>  Vielen Dank erstmal.
>  Wenn ich das dann weiter auflösen möchte, rechne ich
> dann *0.223, sodass t=ln(200)*0.223 dasteht? Denn da käme
> 1,181 raus, aber die Lösung lautet angeblich t=23,74.
>  Was habe ich nun wieder falsch gemacht? ):


Statt zu multiplizieren, musst Du dividieren,
dann kommt auch das Richtig heraus:


Gruss
MathePower


Bezug
                                
Bezug
e Funktion - nach Expo. auflös: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Di 05.04.2011
Autor: Ina92

Ah, natürlich. Das war wirklich ein sehr dummer Fehler, macht auch gleich viel mehr Sinn ;) Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]