www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - e funktion/bel oft diff'bar
e funktion/bel oft diff'bar < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e funktion/bel oft diff'bar: Tipp/idee
Status: (Frage) überfällig Status 
Datum: 20:41 Di 12.05.2009
Autor: Kinghenni

Aufgabe
a) Die Funktion f : [mm] \IR \to \IR [/mm] sei de niert durch
[mm] f(x)=\begin{cases} e^{-1/x^2}, & \mbox{für } x \mbox{ ungleich 0} \\ 0, & \mbox{für } x \mbox{ =0} \end{cases} [/mm]
Zeigen Sie: f ist beliebig oft di fferenzierbar auf R mit
[mm] f^{k}(x)=\begin{cases} Pk(1/x)e^{-1/x^2}, & \mbox{für } x \mbox{ ungleich 0} \\ 0, & \mbox{für } x \mbox{ =0} \end{cases} [/mm]
wobei Pk ein geeignetes Polynom ist.

e funktion ist ja immer unendl. oft diff'bar aber wie beweise ich das?
problem ist das f im reellen ist
und wie die polynom umformung geht weiß ich auch nicht...ab k=2 gilt ja schon die kettenregel

        
Bezug
e funktion/bel oft diff'bar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Do 14.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]