echte zweiseitige Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:25 Fr 02.11.2007 | Autor: | nicebear |
Hallo,
ich soll zeigen, dass die K-Algebra [mm] K^{n x n} [/mm] keine echte zweiseitige Ideale hat.(Man nennt solche K-Algebra einfach.)
Ich weiß nicht, womit ich anfangen soll. Was genau muss man hier zeigen? Kann jemand mir bitte einen Hinweis geben? Ich danke euch im voraus.
viele Grüße
nicebear
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:36 Sa 03.11.2007 | Autor: | felixf |
Hallo nicebear
> ich soll zeigen, dass die K-Algebra [mm]K^{n x n}[/mm] keine echte
> zweiseitige Ideale hat.(Man nennt solche K-Algebra
> einfach.)
>
> Ich weiß nicht, womit ich anfangen soll. Was genau muss man
> hier zeigen? Kann jemand mir bitte einen Hinweis geben? Ich
> danke euch im voraus.
Nimm dir ein beliebiges zweiseitiges Ideal $I [mm] \subseteq K^{n \times n}$. [/mm] Entweder ist nun $I = [mm] \{ 0 \}$, [/mm] oder $I [mm] \neq \{ 0 \}$. [/mm] Im zweiten Fall gibt es also ein $A [mm] \in [/mm] I$ welches nicht die 0-Matrix ist. Multipliziere jetzt $A$ mit passenden Matrizen von links und rechts (probier mal Matrizen, die genau eine 1 und sonst nur 0en enthalten). Wenn du dann noch mit einer passenden Konstanten [mm] $\neq [/mm] 0$ aus $K$ multiplizierst, bekommst du so alle Matrizen, die ueberall 0en haben und nur eine 1 auf der Diagonalen (und zwar fuer jede beliebige Diagonalposition). Damit kannst du dir die Einheitsmatrix basteln.
Liegen alle konstruierten Matrizen im Ideal? Und was bedeutet es, wenn die Einheitsmatrix im Ideal liegt?
LG Felix
|
|
|
|