www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - einelementige Mengen messbar
einelementige Mengen messbar < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

einelementige Mengen messbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Fr 23.01.2009
Autor: Scholli

Aufgabe
Aufgabe: Beweise, dass eine einelementige Menge messbar ist.

Definition: Es sei [mm] \varphi[/mm] ein äußeres Maß auf [mm]X[/mm]. [mm]A \subset X [/mm] heißt messbar, wenn für jedes [mm]D \subset X[/mm] gilt: [mm]\varphi (D) \ge \varphi(A \cap D) + \varphi(C_xA \cap D)[/mm]. Dabei bezeichnet [mm]C_xA[/mm] das Komplement von A in X.

Definition: Eine Abb. [mm] \varphi: \mathcal{P}(X) \rightarrow [0,\infty ][/mm] heißt äußeres Maß, wenn
(i) [mm]\varphi(\emptyset ) = 0[/mm]
(ii) [mm] A \subset B \Rightarrow \varphi (A) \le \varphi (B)[/mm]
(iii) [mm] \varphi ( \cup_{j \in \IN} A_j) \le \sum_{j \in \IN} \varphi (A_j) [/mm] für alle Folgen [mm](A_j)_{j \in \IN}[/mm] in [mm]\mathcal{P} (X)[/mm].

Beim Lernen bin ich drauf gestoßen, dass ich nur mit den Definitionen den Beweis nicht hinkriege.

Sei also [mm]A = \{x\}[/mm] wobei [mm]x \in X[/mm] und [mm]D \subset X [/mm] beliebig.
Für [mm] a \not \in D[/mm] ist mir die Sache klar. Ist allerdings [mm] a \in D[/mm], steh ich auf dem Schlauch. Dann ist [mm]\varphi (A \cap D) = \varphi (A)[/mm] und [mm]\varphi (C_xA \cap D) = \varphi (D \setminus A)[/mm], aber weiter komm ich nicht. Beim Überlegen hab ich gedacht es hilft vielleicht zu zeigen, dass [mm]A[/mm] eine Nullmenge ist (also [mm]\varphi (A) = 0[/mm]), aber das hab ich auch nicht geschafft...

Achso, es kann [mm]\varphi(D) < \infty[/mm] angenommen werden, denn sonst ist nicht viel zu zeigen.

Hat jemand eine Idee?

        
Bezug
einelementige Mengen messbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Fr 23.01.2009
Autor: schlunzbuns1

Also Messbarkeit ist wie folgt erklärt,
wenn ich mich nach 20 Jahren richtig erinnere:

A messbar, wenn fuer jedes D gilt:
m^*(A [mm] \cap [/mm] D) + [mm] m^*(\overline{A} \cap [/mm] D ) = m^*(A)   (*)

Ist nun A = [mm] {x_0}, [/mm] so
gilt A [mm] \cap [/mm] D entweder  [mm] {x_0} [/mm] oder leer.
Das umgekehrte gilt für das Komplement.
Damit ist die Gleichung (*) immer wahr.

Zu weiterem Verständniss: m^* ist ein
aüsseres Mass, das lebt auf der Potenzmenge
und ist daher erst mal subaaditiv. Gleichung (*)
filtert die Mengen heraus, wo dann m^*
additiv wird, und so kriegt man ein richtiges
sigma-additives Mass, aber nicht für alle
Mengen, sondern einem Teilmengensystem der
Potenzmenge, das dann eine Sigma Algebra wird.

Diese Konstruktion geht glaube ich auf Caratheodory
zurück.

Schöne Grüße der
Schlunzbuns

Bezug
                
Bezug
einelementige Mengen messbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Mi 28.01.2009
Autor: Scholli


> A messbar, wenn fuer jedes D gilt:
>  m^*(A [mm]\cap[/mm] D) + [mm]m^*(\overline{A} \cap[/mm] D ) = m^*(A)   (*)

Nein, auf der rechten Seite der Gleichung müsste m^*(D) stehen, siehe z.B.
[]Wikipedia: outer measure (Achtung, das A im Wiki-Artikel ist das D hier im Artikel)

Trotzdem vielen Dank für den Hinweis!

Bezug
        
Bezug
einelementige Mengen messbar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Fr 23.01.2009
Autor: Blech


> Aufgabe: Beweise, dass eine einelementige Menge messbar
> ist.

Das ist nicht immer der Fall.

Sicher, daß nicht irgendein Maß oder eine Klasse von Maßen vorgegeben ist?

Beispiel:

[mm] $X=\{0,1\}$, [/mm]

[mm] $\rho(A)=\begin{cases} 0,&\text{falls}\ A=\emptyset\\ 1, &\text{sonst}\end{cases}$ [/mm]

[mm] $\rho$ [/mm] ist ein äußeres Maß.

[mm] $\{1\}$ [/mm] ist aber nicht meßbar:
[mm] $\rho(\{0,1\})\ngeq \rho(\{1\})+\rho(\{0\})$ [/mm]

ciao
Stefan

EDIT: Typo


Bezug
                
Bezug
einelementige Mengen messbar: Gegenbeispiel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mi 28.01.2009
Autor: Scholli

Bei uns im Unterricht wurde die Behauptung so gar nicht getroffen, aber ich dachte trotzdem dass sie stimmt. Wir sind schnell zum Lebesgue'schen äußeren Maß übergegangen und haben nur noch damit gearbeitet.

Das Gegenbeispiel funktioniert so nicht ganz, weil es [mm]2[/mm] in [mm]X[/mm] gar nicht gibt. Kann man ja aber reinnehmen, so dass es mit [mm]X := \{0, 1, 2\} [/mm] und [mm]D := X[/mm] geht.

Zeigt ja gut, dass Messbarkeit von Mengen total vom verwendeten Maß abhängt.

Vielen Dank!

Bezug
                        
Bezug
einelementige Mengen messbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mi 28.01.2009
Autor: Blech

Hallo,

> Bei uns im Unterricht wurde die Behauptung so gar nicht
> getroffen, aber ich dachte trotzdem dass sie stimmt. Wir
> sind schnell zum Lebesgue'schen äußeren Maß übergegangen
> und haben nur noch damit gearbeitet.

Das ist immer gefährlich. Wenn man irgendwas zuerst allgemein definiert, und sich dann nur noch ein eng begrenztes subset anschaut.

Aus Zeitgründen aber oft unvermeidlich. =)


> Das Gegenbeispiel funktioniert so nicht ganz, weil es [mm]2[/mm] in
> [mm]X[/mm] gar nicht gibt. Kann man ja aber reinnehmen, so dass es

Sollte auch [mm] $\{0\}$ [/mm] sein.

> mit [mm]X := \{0, 1, 2\}[/mm] und [mm]D := X[/mm] geht.

Das geht auch.
  

> Zeigt ja gut, dass Messbarkeit von Mengen total vom
> verwendeten Maß abhängt.

Das tut sie.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]